Difference between revisions of "Bianchi I Model"

From Universe in Problems
Jump to: navigation, search
(Created page with "8 __NOTOC__ (after Esra Russell, Can Battal Kılınç, Oktay K. Pashaev, Bianchi I Models: An Alternative Way To Model The Present-day Universe, arX...")
 
Line 34: Line 34:
  
  
<div id="bianchi_02"></div>
+
<div id="bi_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 2 ===
 
=== Problem 2 ===
<p style= "color: #999;font-size: 11px">problem id: bianchi_02</p>
+
<p style= "color: #999;font-size: 11px">problem id: bi_2</p>
Find the partial energy densities for the two components of the BI Universe dominated by radiation and matter in terms of volume element $V_{rm}$.
+
Reformulate the field equations of the BI Universe in terms of the directional Hubble parameters.
 +
\[H_1\equiv\frac{\dot{a_1}}{a_1},\ H_2\equiv\frac{\dot{a_2}}{a_2},\ H_3\equiv\frac{\dot{a_3}}{a_3}.\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">Equations of state for the considered components read:
+
     <p style="text-align: left;">Inserting the directional Hubble parameters and their time derivatives
\begin{eqnarray}\label{eosrm}
+
\[\dot H_1=\frac{\ddot a_1}{a_1}-\left(\frac{\dot a_1}{a_1}\right)^2,\ \dot H_2=\frac{\ddot a_2}{a_2}-\left(\frac{\dot a_2}{a_2}\right)^2,\ \dot H_3=\frac{\ddot a_3}{a_3}-\left(\frac{\dot a_3}{a_3}\right)^2\]
{p}_{m}=0,\phantom{a}{p}_{r}=\frac{1}{3}{\rho}_{r}.
+
into the modified Friedmann equations we obtain
\end{eqnarray}
+
\begin{align}
\noindent
+
\nonumber
As a result, the energy conservation equations in the radiation-matter period are
+
H_1H_2+H_1H_3+H_2H_3 & =\rho,\\
\begin{eqnarray}
+
\nonumber
\dot{\rho}_{r}=-4 \bar H_{rm} {\rho}_{r},\phantom{a} \dot{\rho}_{m}=-3 \bar H_{rm}{\rho}_{m},
+
\dot H_1+ H_1^2 +\dot H_3+ H_3^2 +H_1H_3& =-p,\\
\label{energyconsermatradzero}
+
\nonumber
\end{eqnarray}
+
\dot H_1+ H_1^2 +\dot H_2+ H_2^2 +H_1H_2& =-p,\\
\noindent
+
\nonumber
Using the definition
+
\dot H_2+ H_2^2 +\dot H_3+ H_3^2 +H_2H_3& =-p.
\[\bar H=\frac13\frac{\dot V}{V}\]
+
\end{align}</p>
one obtains
+
\begin{eqnarray}
+
{\rho}_{r}=\rho_{r,0}\left(\frac{V_{rm,0}}{V_{rm}}\right)^{4/3},\phantom{a} {\rho}_{m}=\rho_{m,0}\frac{V_{rm,0}}{V_{rm}}.
+
\label{energyconsermatrad}
+
\end{eqnarray}</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
<div id="bianchi_03"></div>
+
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 3 ===
 
=== Problem 3 ===
<p style= "color: #999;font-size: 11px">problem id: bianchi_03</p>
+
<p style= "color: #999;font-size: 11px">problem id: </p>
Obtain time evolution equation for the total volume $V_{rm}$ in the BI Universe dominated by radiation and matter.
+
The BI Universe has a flat metric, which implies that its total density is equal to the critical density. Find the  critical density.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">In the considered case of radiation+matter dominated BI Universe
+
     <p style="text-align: left;">\[\rho_{cr}=H_1H_2+H_1H_3+H_2H_3.\]</p>
\[\bar H +3H^2=\frac12(\rho-p) \to \dot{\bar H}_{rm}+3{\bar H}^2_{rm}=\frac12\left(\frac{2}{3}\rho_{r}+\rho_{m}\right).\]
+
Substitution of
+
\[\bar H=\frac13\frac{\dot V_{rm}}{V_{rm}}\]
+
gives
+
\[{\ddot{V}_{rm}}-\frac32\left(\rho_{m,0}+\frac{2}{3}\frac{\rho_{r,0}}{V_{rm}^{1/3}}\right)=0.\]
+
Multiplying this equation with $\dot{V}_{rm}$, integrate it in terms of time, and substitute the normalized densities
+
\[{\rho}_{r,0}=3\bar H^2_{0}\Omega_{r,0},\quad{\rho}_{m,0}=3\bar H^2_{0}\Omega_{m,0},\]
+
we then obtain
+
\[{{\dot V}_{rm}}^2-9\bar H^2_{0}\Omega_{m,0} V_{rm} - 9\bar H^2_{0}\Omega_{r,0} V_{rm}^{2/3}=0.\]</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
<div id="bianchi_04"></div>
+
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 4 ===
 
=== Problem 4 ===
<p style= "color: #999;font-size: 11px">problem id: bianchi_04</p>
+
<p style= "color: #999;font-size: 11px">problem id: </p>
Using result of the previous problem, obtain a relation between the mean Hubble parameter and the volume element.
+
Obtain an analogue of the conservation equation $\dot\rho+3H(\rho+p)=0$ for the case of the BI Universe.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">\[\left(\frac{\bar H_{rm}}{\bar H_0}\right)^2=\frac{\Omega_{m,0}}{V_{rm}}+\frac{\Omega_{r,0}}{V_{rm}^{4/3}}.\]</p>
+
     <p style="text-align: left;">The energy conservation equation $T^\mu_{\nu;\mu}=0$ yields
 +
\[\dot\rho+3\bar H(\rho+p)=0,\quad \bar H\equiv \frac13(H_1+H_2+H_3)=\frac13\left(\frac{\dot a_1}{a_1} +\frac{\dot a_2}{a_2} +\frac{\dot a_3}{a_3}\right),\]
 +
where $\bar H$ represents the mean of the three directional Hubble parameters in the BI Universe.</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Obtain the evolution equation for the mean of the three directional Hubble parameters $\bar H$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Adding the three latter Friedmann equations (see Problem \ref{bi_2}) one obtains
 +
\begin{equation}\label{bi_5_1}
 +
2\frac{d}{dt}\sum\limits_{i=1}^3 H_i+2(H_1^2+H_2^2+H_3^2)+H_1H_2+H_1H_3+H_2H_3=-3p.
 +
\end{equation}
 +
where $\bar H$ represents the mean of the three directional Hubble parameters in the BI Universe.
 +
Substituting
 +
\[\sum\limits_{i=1}^3 H_i^2=\left(\sum\limits_{i=1}^3 H_i\right)^2-2(H_1H_2+H_1H_3+H_2H_3)\]
 +
and
 +
\[H_1H_2+H_1H_3+H_2H_3=\rho\]
 +
into equation (\ref{bi_5_1}), we then obtain
 +
\[\frac{d}{dt}\sum\limits_{i=1}^3 H_i+\left(\sum\limits_{i=1}^3 H_i\right)^2=\frac32(\rho-p).\]
 +
Using the mean of the three directional Hubble parameters $\bar H$ we obtain a nonlinear first order differential equation
 +
\[\dot{\bar H}+3\bar H^2=\frac12(\rho-p).\]</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 6 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Show that the system of equations for the BI Universe
 +
\begin{align}
 +
\nonumber
 +
H_1H_2+H_1H_3+H_2H_3 & =\rho,\\
 +
\nonumber
 +
\dot H_1+ H_1^2 +\dot H_3+ H_3^2 +H_1H_3& =-p,\\
 +
\nonumber
 +
\dot H_1+ H_1^2 +\dot H_2+ H_2^2 +H_1H_2& =-p,\\
 +
\nonumber
 +
\dot H_2+ H_2^2 +\dot H_3+ H_3^2 +H_2H_3& =-p,
 +
\end{align}
 +
can be transformed to the following
 +
\begin{align}
 +
\nonumber
 +
H_1H_2+H_1H_3+H_2H_3 & =\rho,\\
 +
\nonumber
 +
\dot H_1+ 3H_1\bar H & =\frac12(\rho-p),\\
 +
\nonumber
 +
\dot H_2+ 3H_2\bar H & =\frac12(\rho-p),\\
 +
\nonumber
 +
\dot H_3+ 3H_3\bar H & =\frac12(\rho-p).
 +
\end{align}
 +
<!--<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div>--></div>
 +
 
 +
 
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Show that the mean of the three directional Hubble parameters $\bar H$ is related to the elementary volume of the BI Universe $V\equiv a_1a_2a_3$ as \[\bar H=\frac13\frac{\dot V}{V}.\]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[\bar H=\frac13\frac{d}{dt}\ln(a_1a_2a_3)=\frac13\frac{d}{dt}\ln V=\frac13\frac{\dot V}{V}.\]</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 8 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Obtain the volume evolution equation of the BI model.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Using the relation between volume $V$ and the mean Hubble parameter $\bar H$, obtained in the previous problem, one finds
 +
\[\dot{\bar H}=\frac13\frac{\ddot V}{V}-3\bar H^2.\]
 +
As
 +
\[\dot{\bar H}+3\bar H^2=\frac12(\rho-p),\]
 +
we obtain
 +
\[\ddot V-\frac32(\rho-p)V=0.\]</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 9 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Find the generic solution of the directional Hubble parameters.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The equations
 +
\begin{align}
 +
\nonumber
 +
\dot H_1+ 3H_1\bar H & =\frac12(\rho-p),\\
 +
\nonumber
 +
\dot H_2+ 3H_2\bar H & =\frac12(\rho-p),\\
 +
\nonumber
 +
\dot H_3+ 3H_3\bar H & =\frac12(\rho-p),
 +
\end{align}
 +
allow us to write the generic solution of the directional Hubble parameters,
 +
\[H_i(t)=\frac1{\mu(t)}\left[K_i+\frac12\int\mu(t)(\rho(t)-p(t))dt\right],\quad i=1,2,3,\]
 +
where $K_i$s are the integration constants. The integration factor $\mu$ is defined as,
 +
\[\mu(t)=\exp\left(3\int\bar H(t)dt\right).\]
 +
As can be seen, the initial values (integration constants) determine the solution of each directional Hubble parameter. These values are the origin of the anisotropy. Note that the generic solution of the directional Hubble parameters is incomplete. To obtain exact solutions of the Hubble parameters and therefore the Einstein equations, one has to know the state equation for the component which fills the Universe.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Revision as of 01:56, 23 April 2014



(after Esra Russell, Can Battal Kılınç, Oktay K. Pashaev, Bianchi I Models: An Alternative Way To Model The Present-day Universe, arXiv:1312.3502)


Theoretical arguments and indications from recent observational data support the existence of an anisotropic phase that approaches an isotropic one. Therefore, it makes sense to consider models of a Universe with an initially anisotropic background. The anisotropic and homogeneous Bianchi models may provide adequate description of anisotropic phase in history of Universe. One particular type of such models is Bianchi type I (BI) homogeneous models whose spatial sections are flat, but the expansion rates are direction dependent, \[ds^2={c^2}dt^2-a^{2}_{1}(t)dx^2-a^{2}_{2}(t)dy^2-a^{2}_{3}(t)dz^2\] where $a_{1}$, $a_{2}$ and $a_{3}$ represent three different scale factors which are a function of time $t$.

Problem 1

problem id: bianchi_01

Find the field equations of the BI Universe.


Problem 2

problem id: bi_2

Reformulate the field equations of the BI Universe in terms of the directional Hubble parameters. \[H_1\equiv\frac{\dot{a_1}}{a_1},\ H_2\equiv\frac{\dot{a_2}}{a_2},\ H_3\equiv\frac{\dot{a_3}}{a_3}.\]


Problem 3

problem id:

The BI Universe has a flat metric, which implies that its total density is equal to the critical density. Find the critical density.


Problem 4

problem id:

Obtain an analogue of the conservation equation $\dot\rho+3H(\rho+p)=0$ for the case of the BI Universe.


Problem 5

problem id:

Obtain the evolution equation for the mean of the three directional Hubble parameters $\bar H$.


Problem 6

problem id:

Show that the system of equations for the BI Universe \begin{align} \nonumber H_1H_2+H_1H_3+H_2H_3 & =\rho,\\ \nonumber \dot H_1+ H_1^2 +\dot H_3+ H_3^2 +H_1H_3& =-p,\\ \nonumber \dot H_1+ H_1^2 +\dot H_2+ H_2^2 +H_1H_2& =-p,\\ \nonumber \dot H_2+ H_2^2 +\dot H_3+ H_3^2 +H_2H_3& =-p, \end{align} can be transformed to the following \begin{align} \nonumber H_1H_2+H_1H_3+H_2H_3 & =\rho,\\ \nonumber \dot H_1+ 3H_1\bar H & =\frac12(\rho-p),\\ \nonumber \dot H_2+ 3H_2\bar H & =\frac12(\rho-p),\\ \nonumber \dot H_3+ 3H_3\bar H & =\frac12(\rho-p). \end{align}


Problem 7

problem id:

Show that the mean of the three directional Hubble parameters $\bar H$ is related to the elementary volume of the BI Universe $V\equiv a_1a_2a_3$ as \[\bar H=\frac13\frac{\dot V}{V}.\]


Problem 8

problem id:

Obtain the volume evolution equation of the BI model.


Problem 9

problem id:

Find the generic solution of the directional Hubble parameters.