Difference between revisions of "Bianchi I Model"

From Universe in Problems
Jump to: navigation, search
 
Line 1: Line 1:
[[Category:Dark Energy|8]]
 
 
__NOTOC__
 
  
 
(after Esra Russell, Can Battal Kılınç, Oktay K. Pashaev, Bianchi I Models: An Alternative Way To Model The Present-day Universe, arXiv:1312.3502)
 
(after Esra Russell, Can Battal Kılınç, Oktay K. Pashaev, Bianchi I Models: An Alternative Way To Model The Present-day Universe, arXiv:1312.3502)
Line 12: Line 9:
 
<div id="bianchi_01"></div>
 
<div id="bianchi_01"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_01</p>
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_01</p>
 
Find the field equations of the BI Universe.
 
Find the field equations of the BI Universe.
Line 36: Line 33:
 
<div id="bi_2"></div>
 
<div id="bi_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2 ===
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: bi_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: bi_2</p>
 
Reformulate the field equations of the BI Universe in terms of the directional Hubble parameters.
 
Reformulate the field equations of the BI Universe in terms of the directional Hubble parameters.
Line 62: Line 59:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 3 ===
+
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
The BI Universe has a flat metric, which implies that its total density is equal to the critical density. Find the  critical density.
 
The BI Universe has a flat metric, which implies that its total density is equal to the critical density. Find the  critical density.
Line 75: Line 72:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 4 ===
+
'''Problem 4'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Obtain an analogue of the conservation equation $\dot\rho+3H(\rho+p)=0$ for the case of the BI Universe.
 
Obtain an analogue of the conservation equation $\dot\rho+3H(\rho+p)=0$ for the case of the BI Universe.
Line 90: Line 87:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 5 ===
+
'''Problem 5'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Obtain the evolution equation for the mean of the three directional Hubble parameters $\bar H$.
 
Obtain the evolution equation for the mean of the three directional Hubble parameters $\bar H$.
Line 115: Line 112:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 6 ===
+
'''Problem 6'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that the system of equations for the BI Universe
 
Show that the system of equations for the BI Universe
Line 149: Line 146:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 7 ===
+
'''Problem 7'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that the mean of the three directional Hubble parameters $\bar H$ is related to the elementary volume of the BI Universe $V\equiv a_1a_2a_3$ as \[\bar H=\frac13\frac{\dot V}{V}.\]
 
Show that the mean of the three directional Hubble parameters $\bar H$ is related to the elementary volume of the BI Universe $V\equiv a_1a_2a_3$ as \[\bar H=\frac13\frac{\dot V}{V}.\]
Line 162: Line 159:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 8 ===
+
'''Problem 8'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Obtain the volume evolution equation of the BI model.
 
Obtain the volume evolution equation of the BI model.
Line 180: Line 177:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 9 ===
+
'''Problem 9'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Find the generic solution of the directional Hubble parameters.
 
Find the generic solution of the directional Hubble parameters.
Line 202: Line 199:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
==Radiation dominated BI model ==
 
 
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 10 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Find the energy density of the radiation dominated BI Universe in terms of volume element $V_r$.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">By using the energy conservation equation
 
\[\dot\rho+3\bar H(\rho+p)=0\to\dot\rho+4\bar H\rho=0,\]
 
and the volume representation of the mean Hubble parameter
 
\[\bar H=\frac13\frac{d}{dt}\ln(a_1a_2a_3)=\frac13\frac{d}{dt}\ln V=\frac13\frac{\dot V}{V}.\]
 
we obtain (with $\rho\to\rho_r$, $V\to V_r$):
 
\[\rho_r=\rho_{r0}\left(\frac{V_{r0}}{V_r}\right)^{4/3}.\]
 
Here the density and the volume element is normalized to the present time $t_0$. The parameters $\rho_{r0}$ and $V_{r0}$ are the normalized density and normalized volume elements.</p>
 
  </div>
 
</div></div>
 
 
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 11 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Find the mean Hubble parameter of the radiation dominated case.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">For the radiation dominated case
 
\[\ddot V_r-\frac32(\rho-p)V_r=0\to\ddot V_r-V_r\rho_r=0.\]
 
(see problem 8). Using \[\rho_r=\rho_{r0}\left(\frac{V_{r0}}{V_r}\right)^{4/3}\] we obtain (for $V_{r0}=1$)
 
\[\ddot V_r-\rho_{r0}V_r^{-1/3}=0.\]
 
Multiplying this equation  with the $\dot V_r$ and integrating it, yields,
 
\[\dot V_r^2-3\rho_{r0}V_r^{2/3}=0.\]
 
Hence, the exact solution of the volume evolution equation is
 
\[V_r=(2H_0t)^{3/2}.\]
 
The mean Hubble parameter of the radiation dominated case is
 
\[\bar H=\frac13\frac{\dot V_r}{V}=\frac1{2t}.\]</p>
 
  </div>
 
</div></div>
 
 
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 12 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Find the directional expansion rates of the radiation dominated model.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">The generic solution of the directional Hubble parameters (see problem 9) is
 
\[H_i(t)=\frac1{\mu(t)}\left[K_i+\frac12\int\mu(t)(\rho(t)-p(t))dt\right],\quad i=1,2,3,\]
 
Using the expression for the mean Hubble parameter obtained in the previous problem, one finds
 
\[\mu_r(t)=\exp(3\int\bar H(t)dt)\]
 
By direct substitution of the integration factor $\mu_r$ and the equation of state $p_r=\rho_r/3$ of the radiation dominated case we obtain for the directional Hubble parameters that are normalized to the present-day time $t_0$ the following results
 
\[H_{r,i}t_0=\alpha_{r,i}\left(\frac{t_0}{t}\right)^{3/2}+\frac12\frac{t_0}{t};\quad \alpha_{r,i}\equiv\frac{K_{r,i}}{t_0}.\]</p>
 
  </div>
 
</div></div>
 
 
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 13 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Find time dependence for the scale factors $a_i$ in the radiation dominated BI Universe.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">The normalized scale factors $a_i$ can be obtained from the directional Hubble parameters
 
\[H_{r,i}=\alpha_{r,i}\frac1{t_0}\left(\frac{t_0}{t}\right)^{3/2}+\frac12\frac{1}{t},\]
 
with a direct integration in terms of cosmic time,
 
\[a_{r,i}=\exp\left[-2\alpha_{r,i}\left(\sqrt{\frac{t_0}{t}}-1\right)\right]\left(\frac{t_0}{t}\right)^{1/2}.\]
 
The scale factors of the BI radiation dominated model has the contribution from anisotropic expansion/contraction \[\exp\left[-2\alpha_{r,i}\left(\sqrt{\frac{t_0}{t}}-1\right)\right]\] as well as the standard matter dominated FLRW contribution $(t/t_0)^{1/2}$. These two different dynamical behaviors in three directional scale factors of the BI universe indicate that the FLRW part of the scale factor becomes dominant when time starts reaching the present-day. On the other hand, in the early times of the BI model, the expansion is completely dominated by the anisotropic part.</p>
 
  </div>
 
</div></div>
 
 
 
<div id="bianchi_02"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 14 ===
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_02</p>
 
Find the partial energy densities for the two components of the BI Universe dominated by radiation and matter in terms of volume element $V_{rm}$.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">Equations of state for the considered components read:
 
\begin{eqnarray}\label{eosrm}
 
{p}_{m}=0,\phantom{a}{p}_{r}=\frac{1}{3}{\rho}_{r}.
 
\end{eqnarray}
 
\noindent
 
As a result, the energy conservation equations in the radiation-matter period are
 
\begin{eqnarray}
 
\dot{\rho}_{r}=-4 \bar H_{rm} {\rho}_{r},\phantom{a} \dot{\rho}_{m}=-3 \bar H_{rm}{\rho}_{m},
 
\label{energyconsermatradzero}
 
\end{eqnarray}
 
\noindent
 
Using the definition
 
\[\bar H=\frac13\frac{\dot V}{V}\]
 
one obtains
 
\begin{eqnarray}
 
{\rho}_{r}=\rho_{r,0}\left(\frac{V_{rm,0}}{V_{rm}}\right)^{4/3},\phantom{a} {\rho}_{m}=\rho_{m,0}\frac{V_{rm,0}}{V_{rm}}.
 
\label{energyconsermatrad}
 
\end{eqnarray}</p>
 
  </div>
 
</div></div>
 
 
 
<div id="bianchi_03"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 15 ===
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_03</p>
 
Obtain time evolution equation for the total volume $V_{rm}$ in the BI Universe dominated by radiation and matter.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">In the considered case of radiation+matter dominated BI Universe
 
\[\bar H +3H^2=\frac12(\rho-p) \to \dot{\bar H}_{rm}+3{\bar H}^2_{rm}=\frac12\left(\frac{2}{3}\rho_{r}+\rho_{m}\right).\]
 
Substitution of
 
\[\bar H=\frac13\frac{\dot V_{rm}}{V_{rm}}\]
 
gives
 
\[{\ddot{V}_{rm}}-\frac32\left(\rho_{m,0}+\frac{2}{3}\frac{\rho_{r,0}}{V_{rm}^{1/3}}\right)=0.\]
 
Multiplying this equation with $\dot{V}_{rm}$, integrate it in terms of time, and substitute the normalized densities
 
\[{\rho}_{r,0}=3\bar H^2_{0}\Omega_{r,0},\quad{\rho}_{m,0}=3\bar H^2_{0}\Omega_{m,0},\]
 
we then obtain
 
\[{{\dot V}_{rm}}^2-9\bar H^2_{0}\Omega_{m,0} V_{rm} - 9\bar H^2_{0}\Omega_{r,0} V_{rm}^{2/3}=0.\]</p>
 
  </div>
 
</div></div>
 
 
 
<div id="bianchi_04"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 16 ===
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_04</p>
 
Using result of the previous problem, obtain a relation between the mean Hubble parameter and the volume element.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">\[\left(\frac{\bar H_{rm}}{\bar H_0}\right)^2=\frac{\Omega_{m,0}}{V_{rm}}+\frac{\Omega_{r,0}}{V_{rm}^{4/3}}.\]</p>
 
  </div>
 
</div></div>
 
 
 
----
 

Latest revision as of 22:00, 18 June 2015

(after Esra Russell, Can Battal Kılınç, Oktay K. Pashaev, Bianchi I Models: An Alternative Way To Model The Present-day Universe, arXiv:1312.3502)


Theoretical arguments and indications from recent observational data support the existence of an anisotropic phase that approaches an isotropic one. Therefore, it makes sense to consider models of a Universe with an initially anisotropic background. The anisotropic and homogeneous Bianchi models may provide adequate description of anisotropic phase in history of Universe. One particular type of such models is Bianchi type I (BI) homogeneous models whose spatial sections are flat, but the expansion rates are direction dependent, \[ds^2={c^2}dt^2-a^{2}_{1}(t)dx^2-a^{2}_{2}(t)dy^2-a^{2}_{3}(t)dz^2\] where $a_{1}$, $a_{2}$ and $a_{3}$ represent three different scale factors which are a function of time $t$.

Problem 1

problem id: bianchi_01

Find the field equations of the BI Universe.


Problem 2

problem id: bi_2

Reformulate the field equations of the BI Universe in terms of the directional Hubble parameters. \[H_1\equiv\frac{\dot{a_1}}{a_1},\ H_2\equiv\frac{\dot{a_2}}{a_2},\ H_3\equiv\frac{\dot{a_3}}{a_3}.\]


Problem 3

problem id:

The BI Universe has a flat metric, which implies that its total density is equal to the critical density. Find the critical density.


Problem 4

problem id:

Obtain an analogue of the conservation equation $\dot\rho+3H(\rho+p)=0$ for the case of the BI Universe.


Problem 5

problem id:

Obtain the evolution equation for the mean of the three directional Hubble parameters $\bar H$.


Problem 6

problem id:

Show that the system of equations for the BI Universe \begin{align} \nonumber H_1H_2+H_1H_3+H_2H_3 & =\rho,\\ \nonumber \dot H_1+ H_1^2 +\dot H_3+ H_3^2 +H_1H_3& =-p,\\ \nonumber \dot H_1+ H_1^2 +\dot H_2+ H_2^2 +H_1H_2& =-p,\\ \nonumber \dot H_2+ H_2^2 +\dot H_3+ H_3^2 +H_2H_3& =-p, \end{align} can be transformed to the following \begin{align} \nonumber H_1H_2+H_1H_3+H_2H_3 & =\rho,\\ \nonumber \dot H_1+ 3H_1\bar H & =\frac12(\rho-p),\\ \nonumber \dot H_2+ 3H_2\bar H & =\frac12(\rho-p),\\ \nonumber \dot H_3+ 3H_3\bar H & =\frac12(\rho-p). \end{align}


Problem 7

problem id:

Show that the mean of the three directional Hubble parameters $\bar H$ is related to the elementary volume of the BI Universe $V\equiv a_1a_2a_3$ as \[\bar H=\frac13\frac{\dot V}{V}.\]


Problem 8

problem id:

Obtain the volume evolution equation of the BI model.


Problem 9

problem id:

Find the generic solution of the directional Hubble parameters.