Difference between revisions of "Binary systems"

From Universe in Problems
Jump to: navigation, search
(Created page with "8")
 
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
[[Category:Weak field limit and gravitational waves|8]]
 
[[Category:Weak field limit and gravitational waves|8]]
 +
 +
 +
__TOC__
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1: Symmetric binary system===
 +
Find the strain tensor $\bar{h}_{\alpha\beta}$ of the metric perturbation far from a binary system with components of equal masses $M$. The radius of the orbit is $R$, orbital frequency $\omega$.
 +
<br/>
 +
<!--Hint: Calculating the quadrupole moment of the system gives
 +
\[\bar{h}^{\alpha\beta}
 +
=-\frac{8\omega^2 MR^{2}}{r}
 +
\left( \begin{matrix}
 +
  \cos \left[ 2\omega (t-r) \right]
 +
& \sin \left[ 2\omega (t-r) \right] & 0  \\
 +
  \sin \left[ 2\omega (t-r) \right]
 +
& -\cos \left[ 2\omega (t-r) \right] & 0  \\
 +
  0 & 0 & 0  \\
 +
\end{matrix} \right)\]-->
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Let the orbit lie in the $xy$-plane.  Then the masses have trajectories
 +
\[\left( R\cos \omega t,\ R\sin \omega t,0 \right),
 +
\quad
 +
\left( -R\cos \omega t,\ -R\sin \omega t,0 \right)\]
 +
From the definition of the second mass moment
 +
\[I^{\alpha\beta}(t)=\int d^{3} x\;
 +
\rho (t,\mathbf{x})x^{\alpha}x^{\beta},\]
 +
($\rho$ is the rest-mass density) we find for binary system
 +
\[I^{\alpha\beta}=MR^{2}
 +
\left( \begin{matrix}
 +
  1+\cos 2\omega t & \sin 2\omega t & 0  \\
 +
  \sin 2\omega t & 1-\cos 2\omega t & 0  \\
 +
  0 & 0 & 0  \\
 +
\end{matrix} \right).\]
 +
As we have seen above in the  long-wavelength approximation $\lambda \gg R$ and the distant-source approximation $r\gg R$ the strain tensor is
 +
\[ \bar{h}^{\alpha\beta}(t,\mathbf{x})
 +
=\frac{2}{r}\ddot{I}^{\alpha\beta}(t-r)\]
 +
Therefore,
 +
\[\bar{h}^{\alpha\beta}
 +
=-\frac{8\omega^2 MR^{2}}{r}
 +
\left( \begin{matrix}
 +
  \cos \left[ 2\omega (t-r) \right]
 +
& \sin \left[ 2\omega (t-r) \right] & 0  \\
 +
  \sin \left[ 2\omega (t-r) \right]
 +
& -\cos \left[ 2\omega (t-r) \right] & 0  \\
 +
  0 & 0 & 0  \\
 +
\end{matrix} \right)\]
 +
Note that this representation of $\bar{h}^{\alpha\beta}$ is already in transverse traceless gauge for propagation in the $z$ direction. Also, the frequency of the emitted radiation is twice the orbital frequency by the symmetry of the problem.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 2: Gravitational luminosity===
 +
Calculate the gravitational luminosity for the binary system with equal masses of the previous problem.
 +
<br/>
 +
<!--Hint: Calculating the quadrupole tensor's square and averaging gives
 +
\[L_{GW}=\frac{128}{5}M^{2}R^{4}\omega^{6}.\]-->
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The components of $Q^{\mu\nu}$  were calculated in the previous problem, so the quadrupole formula can be immediately applied to find the luminosity. The trace $Q_{\alpha}^{\alpha}=2MR^{2}$ is independent  of time, so the time derivates of $I^{\alpha\beta}$ and $Q^{\alpha\beta}$ coincide. Averaging over the orbital period provides an additional factor of $1/2$ . The result for ${{L}_{GW}}$ is then
 +
\[L_{GW}=\frac{128}{5}M^{2}R^{4}\omega^{6}.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 3: Asymmetric binary system===
 +
Calculate the gravitational luminosity for a binary system with components of arbitrary masses $M_1$ and $M_2$.
 +
<br/>
 +
<!--Hint: If $R$ is the distance between the components, then
 +
\[L_{GW}=\frac{32}{5}\frac{G^4}{c^5}
 +
\frac{M_1^2 M_2^2 (M_1 +M_2)}{R^5}.\]-->
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Let $R$ be the distance between the components. Then the quadrupole formula gives
 +
\[L_{GW}=\frac{32G}{5c^5}
 +
\Big(\frac{M_{1}M_{2}}{M_{1}+M_{2}}\Big)^{2}
 +
R^{4}\omega^6.\]
 +
Frequency $\omega$ is related to $R$ through
 +
\[\omega^{2}R^{3}=G(M_{1}+M_{2}),\]
 +
so for the gravitational luminosity we finally obtain
 +
\[L_{GW}=\frac{32}{5}\frac{G^{4}}{c^5}
 +
\frac{M_{1}^{2}M_{2}^{2}(M_{1}+M_{2})}{R^5}.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 4: Binary system evolution===
 +
Find the rate of the two components of a binary with masses $M_1$ and $M_2$ approaching due to emission of gravitational waves. Obtain the distance between them $R$ as a function of time.
 +
<br/>
 +
<!--Hint: Equating $dE(R)/dt$ to losses due to gravitational radiation, we obtain differential equation for $R(t)$. Integration yields
 +
\[ R(t)=4\;\Big[
 +
\frac{G^{3}M_{1}M_{2}(M_1 +M_2)}{5 c^5}
 +
(t_{coal}-t)\Big]^{1/4}.\]-->
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">From the virial theorem $2\left\langle T \right\rangle =-\left\langle U \right\rangle$, the energy of the system is
 +
\[E=-G\frac{M_1 M_2}{2R},\]
 +
so
 +
\[\dot{R}=\frac{2R^{2}}{GM_{1}M_{2}}\frac{dE}{dt}.\]
 +
Then from $dE/dt=-L_{GW}$ and using the expression for the gravitational luminosity, we obtain
 +
\[\dot{R}=-\frac{64G^{3}}{5c^{2}}
 +
\frac{M_{1}M_{2}(M_{1}+M_{2})}{R^3}.\]
 +
Integrating from present time $t$ to the future time of coalescence ${{t}_{coal}}$, we have $R(t)$:
 +
\[ R(t)=2\;\Big[\frac{16}{5}
 +
\frac{G^{3}M_{1}M_{2}(M_1 +M_2)}{c^5}
 +
(t_{coal}-t)\Big]^{1/4}.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5: Binary system lifetime===
 +
Calculate the lifetime of a binary system of mass $M$ and orbital radius $R$ due to emission of gravitational waves alone. Make estimates for the Hulse-Taylor binary pulsar PSR1913+16 with the following characteristics: $M\approx 2.8 M_\odot$, $R\approx 4.5 R_\odot$, $R_\odot \approx 7\times 10^8$m.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">For a binary with $M_1 =M_2 =M/2$ a rough estimate would be
 +
\[t_{chirp}\sim\frac{MV^{2}}{L_{GW}}
 +
=\frac{5M}{2}\Big(\frac{R}{M}\Big)^{4}.\]
 +
More accurate evaluation would use the time evolution of $R(t)$: for $M_1 =M_2 =M/2$ we get
 +
\[t_{chirp}=\frac{5}{16}\frac{c^5 R^4}{G^3 M^3}.\]
 +
This is of the order of $45\times 10^9$ years.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 6: Mass through GW frequency===
 +
Show that the mass of a binary can be determined through the frequency of gravitational waves it generates.
 +
<br/>
 +
<!--Hint: It is possible thanks to the relation
 +
\[f_{GW}=(1.9Hz)\Big(\frac{1.4M_{\odot}}{M}\Big)^{5/8}
 +
\Big(\frac{days}{t_{coal}-t}\Big)^{3/8}.\]-->
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">From the previous problem for gravitational wave frequency for a binary with components of equal masses we get
 +
\begin{align*}
 +
f_{GW}&=\frac{\omega }{\pi }
 +
=\frac{1}{\pi }\Big(\frac{GM}{4R^3}\Big)^{1/2}
 +
=\frac{2^{1/8}5^{3/8}}{8\pi}
 +
\Big(\frac{c^3}{GM}\Big)^{5/8}(t_{coal}-t)^{-3/8}=\\
 +
&=(1.9Hz)\Big(\frac{1.4M_{\odot}}{M}\Big)^{5/8}
 +
\Big(\frac{days}{\tau}\Big)^{3/8},
 +
\quad \tau \equiv t_{coal}-t.
 +
\end{align*}
 +
Hence the mass of the compact binary system can be derived from the frequency evolution.</p>
 +
  </div>
 +
</div></div>

Latest revision as of 13:50, 15 January 2013



Problem 1: Symmetric binary system

Find the strain tensor $\bar{h}_{\alpha\beta}$ of the metric perturbation far from a binary system with components of equal masses $M$. The radius of the orbit is $R$, orbital frequency $\omega$.


Problem 2: Gravitational luminosity

Calculate the gravitational luminosity for the binary system with equal masses of the previous problem.


Problem 3: Asymmetric binary system

Calculate the gravitational luminosity for a binary system with components of arbitrary masses $M_1$ and $M_2$.


Problem 4: Binary system evolution

Find the rate of the two components of a binary with masses $M_1$ and $M_2$ approaching due to emission of gravitational waves. Obtain the distance between them $R$ as a function of time.


Problem 5: Binary system lifetime

Calculate the lifetime of a binary system of mass $M$ and orbital radius $R$ due to emission of gravitational waves alone. Make estimates for the Hulse-Taylor binary pulsar PSR1913+16 with the following characteristics: $M\approx 2.8 M_\odot$, $R\approx 4.5 R_\odot$, $R_\odot \approx 7\times 10^8$m.


Problem 6: Mass through GW frequency

Show that the mass of a binary can be determined through the frequency of gravitational waves it generates.