Difference between revisions of "CMB anisotropy"

From Universe in Problems
Jump to: navigation, search
Line 7: Line 7:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1 ===
 
=== Problem 1 ===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: per25</p>
 
+
Obtain the equation of motion for photon in metrics ($ds^2=a^2(\eta)[(1+2\Phi)d\eta^2-(1-2\Phi)\delta_{ij}dx^idx^j]$) in linear approximation in $\Phi$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Equation of geodesics describing the propagation of radiation in space with arbitrary curvature can be represented as:
 +
$$
 +
\frac{dx^\alpha }
 +
{d\lambda } = p^\alpha,\; \frac{dp_\alpha }
 +
{d\lambda} = \frac{1}
 +
{2}\frac{\partial g_{\gamma \delta }}
 +
{\partial x^\alpha }p^\gamma p^\delta,
 +
$$
 +
where $\lambda$ is an arbitrary affine parameter, which is taken along geodesic. Since photon has zero mass, the first integral of this equation is:
 +
$$
 +
p^\alpha p_\alpha = g^{\mu \nu }p_\mu p_\nu  = 0.
 +
$$
 +
Using this relation, zero component can eliminated from the equations of geodesics:
 +
$$
 +
p^0 = \frac{1}
 +
{a^2}\left( \sum\limits_{i = 1}^3 p_i^2 \right)^{1/2} = \frac{p}{a^2}
 +
$$
 +
and
 +
$$
 +
p_0 = \left( 1 + 2\Phi\right)p.
 +
$$
 +
Hence,
 +
$$
 +
\frac{dx^i}
 +
{d\eta } = \frac{p^i}
 +
{p^0} = \frac{ - \frac{1}
 +
{a^2}\left( 1 + 2\Phi  \right){p_i}}
 +
{p^0} = r^i\left( 1 + 2\Phi\right),
 +
$$
 +
where $r^i =  - \frac{p_i}{p^0}$. Expressing $p^i$ and $p^0$ through $p$ and substituting metrics into the second equation while keeping only linear terms in $\Phi$ one obtains:
 +
$$\frac{dp_\alpha }
 +
{d\eta} = \frac{1}
 +
{2}\frac{\partial g_{\gamma \delta }}
 +
{\partial x^\alpha }\frac{p^\gamma p^\delta }
 +
{p^0} = 2p\frac{\partial \Phi }
 +
{\partial x^\alpha }.
 +
$$</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
<div id=""></div>
+
<div id="per26"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1 ===
 
=== Problem 1 ===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: per26</p>
 
+
For the Universe, dominated by a substance with equation of state $ p = w \rho $, connect in the first approximation the fluctuations of the gravitational potential of the CMB with $ \Phi$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Using the invariant $aT = const$:
 +
$$
 +
\frac{\delta T}{T} =-\frac{\delta a}{a}.
 +
$$
 +
In case of $p = w\rho ,\; a\left( t \right) = t^{\frac{2}
 +
{3\left( 1 + w \right)}}$ and, hence,
 +
$$
 +
\frac{\delta a}
 +
{a} = \frac{2}
 +
{3\left(1 + w\right)}\frac{\delta t}{t}.
 +
$$
 +
In the case of a weak gravitational field (in this approximation, we assume that the density perturbations generate a small perturbation of the metric, which is valid for the time at which we see these disturbances), the true time $\tau$ is connected to coordinate time $t$ as
 +
$$
 +
d\tau=\sqrt{g_{00}}dt\approx\sqrt{1 + 2\Phi } dt \approx \left(1+\Phi\right)dt,
 +
$$
 +
where $\Phi$ is a Newtonian gravitational potential and, thus, ${\delta t}/t \simeq \Phi$:
 +
$$
 +
\left(\frac{\delta T}{T} \right)_e =  - \frac{2}{3\left( 1 + w\right)}{\Phi_e}
 +
$$
 +
where subscript $e$ denotes the moment of emission.
 +
When light is propagating in expanding Universe, the relation $\omega (t) \propto a(t)^{-1}$ holds. Using the same arguments in Newtonian approximation, one could write
 +
$$
 +
\left( \frac{\delta T}
 +
{T} \right)_0 = \left(\frac{\delta T}
 +
{T}\right)_e + \Phi _e
 +
$$
 +
where subscript $0$ denotesthe moment of detection. Finally,
 +
$$
 +
\left(\frac{\delta T}
 +
{T} \right)_0 = \left(\frac{1 + 3w}
 +
{3 + 3w} \right)\Phi _e
 +
$$</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 34: Line 101:
 
=== Problem 1 ===
 
=== Problem 1 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Estimate the spatial scale of Silk effect. Assume that at the temperatures we are interested in, photon changes direction randomly, and  its energy does not change when scattering on electrons.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">In this approximation, the oscillations of the photon component
 +
smooth on scales smaller than the distance at which the photon diffuses
 +
in characteristic period of evolution. If considering the before recombination era this time is the Hubble time.
 +
 
 +
In this ''random walk'' approximation Silk scale $\lambda_S$ can be estimated as geometric average of mean free path of a photon $\lambda_\gamma$ and horizon scale $l_H$ (or Hubble time $t_H\sim H^{-1}$). The number collisions between photon and electrons during the Hubble time is estimated as $t_H/\lambda_\gamma$ and distance between collisions is of order of $\lambda_\gamma$, so that a photon diffuses at distance $$\lambda_S \sim \sqrt{N}\lambda_\gamma =\sqrt{\frac{t_H}{\lambda_\gamma}}\lambda_\gamma = \sqrt{\lambda_\gamma l_H}$$ during the Hubble time.  Hubble parameter at recombination era is
 +
$$H(z_r)=H_0\sqrt{\Omega_{m0}(1+z_r)^3+\Omega_{r0}(1+z_r)^4}\simeq 5\, \mbox{Mpc}^{-1}.$$
 +
 
 +
Densities of free electrons and protons coincide and the latter before the resombination is about 75 \% of barion density: other barions (and electrons) are contained in helium atoms, which formed in the Universe somewhat earlier. Thus, before the start of resombination the electrons density satisfies
 +
$$n_e(z)=0.75 \frac{\rho_b(z)}{m_p}=6\cdot 10^{-4}\Omega_b (1+z)^3 \mbox{sm}^{-3}.$$
 +
At the beginning of recombination the number density of free electrons is
 +
$n_e(\eta_r)=230\,\mbox{sm}^{-3}.$
 +
Hence,
 +
$$\lambda_S(\eta) \simeq \sqrt{\frac{1}{\sigma_{_T}}n_e(\eta) H(\eta)},$$
 +
which gives $\lambda_S(\eta_r) \simeq 0.02 \,\mbox{Mpc.}$</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 47: Line 127:
 
=== Problem 1 ===
 
=== Problem 1 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Estimate the angular scale of the CMB anisotropy due to the Silk effect.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Physical distance $R(z)$  is connected to the angular diameter distance $R_a(z)$ as
 +
$$R_a(z)=\frac{1}{1+z}R(z),$$ where $$R(z)=R_H\int_0^{z}\frac{dz}{\sqrt{\Omega_{m0}(1+z)^3+\Omega_{\Lambda 0}}},$$ and $R_H$ is Hubble radius.
 +
Using the relation $\theta \simeq \frac{\lambda_S}{R_a(z_r)}$ one can obtain $\theta \simeq 10^{-3}$.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
 
+
<!--
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">

Revision as of 00:51, 25 February 2014