Difference between revisions of "CMB anisotropy"

From Universe in Problems
Jump to: navigation, search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
[[Category:Perturbation theory in cosmology|4]]
 
[[Category:Perturbation theory in cosmology|4]]
 +
 +
__NOTOC__
 +
 +
 +
<div id="per25"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
<p style= "color: #999;font-size: 11px">problem id: per25</p>
 +
Obtain the equation of motion for photon in metrics ($ds^2=a^2(\eta)[(1+2\Phi)d\eta^2-(1-2\Phi)\delta_{ij}dx^idx^j]$) in linear approximation in $\Phi$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Equation of geodesics describing the propagation of radiation in space with arbitrary curvature can be represented as:
 +
$$
 +
\frac{dx^\alpha }
 +
{d\lambda } = p^\alpha,\; \frac{dp_\alpha }
 +
{d\lambda} = \frac{1}
 +
{2}\frac{\partial g_{\gamma \delta }}
 +
{\partial x^\alpha }p^\gamma p^\delta,
 +
$$
 +
where $\lambda$ is an arbitrary affine parameter, which is taken along geodesic. Since photon has zero mass, the first integral of this equation is:
 +
$$
 +
p^\alpha p_\alpha = g^{\mu \nu }p_\mu p_\nu  = 0.
 +
$$
 +
Using this relation, zero component can eliminated from the equations of geodesics:
 +
$$
 +
p^0 = \frac{1}
 +
{a^2}\left( \sum\limits_{i = 1}^3 p_i^2 \right)^{1/2} = \frac{p}{a^2}
 +
$$
 +
and
 +
$$
 +
p_0 = \left( 1 + 2\Phi\right)p.
 +
$$
 +
Hence,
 +
$$
 +
\frac{dx^i}
 +
{d\eta } = \frac{p^i}
 +
{p^0} = \frac{ - \frac{1}
 +
{a^2}\left( 1 + 2\Phi  \right){p_i}}
 +
{p^0} = r^i\left( 1 + 2\Phi\right),
 +
$$
 +
where $r^i =  - \frac{p_i}{p^0}$. Expressing $p^i$ and $p^0$ through $p$ and substituting metrics into the second equation while keeping only linear terms in $\Phi$ one obtains:
 +
$$\frac{dp_\alpha }
 +
{d\eta} = \frac{1}
 +
{2}\frac{\partial g_{\gamma \delta }}
 +
{\partial x^\alpha }\frac{p^\gamma p^\delta }
 +
{p^0} = 2p\frac{\partial \Phi }
 +
{\partial x^\alpha }.
 +
$$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="per26"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 2 ===
 +
<p style= "color: #999;font-size: 11px">problem id: per26</p>
 +
For the Universe, dominated by a substance with equation of state $ p = w \rho $, connect in the first approximation the fluctuations of the gravitational potential of the CMB with $ \Phi$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Using the invariant $aT = const$:
 +
$$
 +
\frac{\delta T}{T} =-\frac{\delta a}{a}.
 +
$$
 +
In case of $p = w\rho ,\; a\left( t \right) = t^{\frac{2}
 +
{3\left( 1 + w \right)}}$ and, hence,
 +
$$
 +
\frac{\delta a}
 +
{a} = \frac{2}
 +
{3\left(1 + w\right)}\frac{\delta t}{t}.
 +
$$
 +
In the case of a weak gravitational field (in this approximation, we assume that the density perturbations generate a small perturbation of the metric, which is valid for the time at which we see these disturbances), the true time $\tau$ is connected to coordinate time $t$ as
 +
$$
 +
d\tau=\sqrt{g_{00}}dt\approx\sqrt{1 + 2\Phi } dt \approx \left(1+\Phi\right)dt,
 +
$$
 +
where $\Phi$ is a Newtonian gravitational potential and, thus, ${\delta t}/t \simeq \Phi$:
 +
$$
 +
\left(\frac{\delta T}{T} \right)_e =  - \frac{2}{3\left( 1 + w\right)}{\Phi_e}
 +
$$
 +
where subscript $e$ denotes the moment of emission.
 +
When light is propagating in expanding Universe, the relation $\omega (t) \propto a(t)^{-1}$ holds. Using the same arguments in Newtonian approximation, one could write
 +
$$
 +
\left( \frac{\delta T}
 +
{T} \right)_0 = \left(\frac{\delta T}
 +
{T}\right)_e + \Phi _e
 +
$$
 +
where subscript $0$ denotesthe moment of detection. Finally,
 +
$$
 +
\left(\frac{\delta T}
 +
{T} \right)_0 = \left(\frac{1 + 3w}
 +
{3 + 3w} \right)\Phi _e
 +
$$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 3 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Estimate the spatial scale of Silk effect. Assume that at the temperatures we are interested in, photon changes direction randomly, and  its energy does not change when scattering on electrons.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">In this approximation, the oscillations of the photon component
 +
smooth on scales smaller than the distance at which the photon diffuses
 +
in characteristic period of evolution. If considering the before recombination era this time is the Hubble time.
 +
 +
In this ''random walk'' approximation Silk scale $\lambda_S$ can be estimated as geometric average of mean free path of a photon $\lambda_\gamma$ and horizon scale $l_H$ (or Hubble time $t_H\sim H^{-1}$). The number collisions between photon and electrons during the Hubble time is estimated as $t_H/\lambda_\gamma$ and distance between collisions is of order of $\lambda_\gamma$, so that a photon diffuses at distance $$\lambda_S \sim \sqrt{N}\lambda_\gamma =\sqrt{\frac{t_H}{\lambda_\gamma}}\lambda_\gamma = \sqrt{\lambda_\gamma l_H}$$ during the Hubble time.  Hubble parameter at recombination era is
 +
$$H(z_r)=H_0\sqrt{\Omega_{m0}(1+z_r)^3+\Omega_{r0}(1+z_r)^4}\simeq 5\, \mbox{Mpc}^{-1}.$$
 +
 +
Densities of free electrons and protons coincide and the latter before the resombination is about 75 \% of barion density: other barions (and electrons) are contained in helium atoms, which formed in the Universe somewhat earlier. Thus, before the start of resombination the electrons density satisfies
 +
$$n_e(z)=0.75 \frac{\rho_b(z)}{m_p}=6\cdot 10^{-4}\Omega_b (1+z)^3 \mbox{sm}^{-3}.$$
 +
At the beginning of recombination the number density of free electrons is
 +
$n_e(\eta_r)=230\,\mbox{sm}^{-3}.$
 +
Hence,
 +
$$\lambda_S(\eta) \simeq \sqrt{\frac{1}{\sigma_{_T}}n_e(\eta) H(\eta)},$$
 +
which gives $\lambda_S(\eta_r) \simeq 0.02 \,\mbox{Mpc.}$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 4 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Estimate the angular scale of the CMB anisotropy due to the Silk effect.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Physical distance $R(z)$  is connected to the angular diameter distance $R_a(z)$ as
 +
$$R_a(z)=\frac{1}{1+z}R(z),$$ where $$R(z)=R_H\int_0^{z}\frac{dz}{\sqrt{\Omega_{m0}(1+z)^3+\Omega_{\Lambda 0}}},$$ and $R_H$ is Hubble radius.
 +
Using the relation $\theta \simeq \frac{\lambda_S}{R_a(z_r)}$ one can obtain $\theta \simeq 10^{-3}$.</p>
 +
  </div>
 +
</div></div>

Latest revision as of 01:05, 25 February 2014



Problem 1

problem id: per25

Obtain the equation of motion for photon in metrics ($ds^2=a^2(\eta)[(1+2\Phi)d\eta^2-(1-2\Phi)\delta_{ij}dx^idx^j]$) in linear approximation in $\Phi$.


Problem 2

problem id: per26

For the Universe, dominated by a substance with equation of state $ p = w \rho $, connect in the first approximation the fluctuations of the gravitational potential of the CMB with $ \Phi$.


Problem 3

problem id:

Estimate the spatial scale of Silk effect. Assume that at the temperatures we are interested in, photon changes direction randomly, and its energy does not change when scattering on electrons.


Problem 4

problem id:

Estimate the angular scale of the CMB anisotropy due to the Silk effect.