Difference between revisions of "CMB interaction with other components"

From Universe in Problems
Jump to: navigation, search
Line 1: Line 1:
 
[[Category:Cosmic Microwave Background (CMB)|5]]
 
[[Category:Cosmic Microwave Background (CMB)|5]]
  
__NOTOC__
+
__TOC__
  
 
<div id="Cerazm1"></div>
 
<div id="Cerazm1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 1: free electron is invisible ===
 
Show that an isolated free electron can neither emit nor absorb a photon.
 
Show that an isolated free electron can neither emit nor absorb a photon.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 18: Line 18:
 
<div id="Cerazm2"></div>
 
<div id="Cerazm2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2 ===
+
=== Problem 2: Compton effect ===
A photon of frequency $\omega$ impacts on an electron at rest and is scattered at angle $\vartheta $. Find the change of the photon frequency.
+
A photon of frequency $\omega$ interacts with an electron at rest and is scattered at angle $\vartheta$. Find the change of the photon's frequency.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 31: Line 31:
 
<div id="cmb45n"></div>
 
<div id="cmb45n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 3 ===
+
=== Problem 3: inverse Compton ===
When a relativistic charged particle is scattered on a photon, the process is called the inverse Compton scattering of the photon. Consider the inverse Compton scattering in the case when a charged particle with rest mass $m$ and total energy $E\gg m$ in laboratory frame impacts a photon with frequency $\nu$. What is the maximum energy that the particle can transfer to the photon?
+
When a relativistic charged particle is scattered on a photon, the process is called the inverse Compton scattering of the photon. Consider the inverse Compton scattering in the case when a charged particle with rest mass $m$ and total energy $E\gg m$ in the laboratory frame interacts with a photon of frequency $\nu$. What is the maximum energy that the particle can transfer to the photon?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">Let the index $\gamma$ denotes the photon and primed values correspond to that after the scattering. The $4$-momntum conservation law reads:
+
     <p style="text-align: left;">Let the index $\gamma$ denote the photon and primes correspond to quantities after the scattering. The $4$-momentum conservation law reads
 
$$
 
$$
 
p_{\gamma i}+p_i= p'_{\gamma i}+p'_i.
 
p_{\gamma i}+p_i= p'_{\gamma i}+p'_i.
 
$$
 
$$
First of all exclude the $4$-momentum $p'_i$ from the above conservation law to obtain:
+
First of all we exclude the $4$-momentum $p'_i$ from the above conservation law to obtain
 
$$
 
$$
 
(p_{\gamma i}+p_i- p'_{\gamma i})^2 = {p'_i}^2=m^2 .
 
(p_{\gamma i}+p_i- p'_{\gamma i})^2 = {p'_i}^2=m^2 .
 
$$
 
$$
As is well known $(p_{\gamma i})^2=p_{\gamma i}p^i_{\gamma}=0,$ then one obtains
+
As $(p_{\gamma i})^2=p_{\gamma i}p^i_{\gamma}=0$,
 
$$
 
$$
 
E(E_{\gamma}-E'_{\gamma})+\vec{p}'(\vec{p}_{\gamma}-\vec{p}'_{\gamma})=
 
E(E_{\gamma}-E'_{\gamma})+\vec{p}'(\vec{p}_{\gamma}-\vec{p}'_{\gamma})=
 
E_{\gamma}E'_{\gamma}-\vec{p}_{\gamma}\vec{p}'_{\gamma}  .
 
E_{\gamma}E'_{\gamma}-\vec{p}_{\gamma}\vec{p}'_{\gamma}  .
 
$$
 
$$
The maximum energy transmission takes place at the scattering angle $180°$. Taking into account that  $|\vec{p_\gamma}|= E_\gamma ,$ one obtains
+
The maximum energy transmission takes place at the scattering angle $180°$. Taking into account that  $|\vec{p_\gamma}|= E_\gamma$, one obtains
 
$$
 
$$
 
E(E_{\gamma}-E'_{\gamma})+p(E_{\gamma}+E'_{\gamma})=2E_{\gamma}E'_{\gamma},
 
E(E_{\gamma}-E'_{\gamma})+p(E_{\gamma}+E'_{\gamma})=2E_{\gamma}E'_{\gamma},
 
$$
 
$$
and finally:
+
and finally
 
$$
 
$$
 
E'_{\gamma}=\frac{E_\gamma(E+P)}{2E_\gamma+E-p}.
 
E'_{\gamma}=\frac{E_\gamma(E+P)}{2E_\gamma+E-p}.
Line 64: Line 64:
 
<div id="cmb30"></div>
 
<div id="cmb30"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 4 ===
+
=== Problem 4: secondary scatterings ===
 
Estimate the probability of the fact that a photon observed on Earth has already experienced Thomson scattering since the moment it left the surface of last scattering.
 
Estimate the probability of the fact that a photon observed on Earth has already experienced Thomson scattering since the moment it left the surface of last scattering.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 73: Line 73:
 
W = \sigma _T Nd,
 
W = \sigma _T Nd,
 
\]
 
\]
where $\sigma _T\simeq6.65 \cdot 10^{ - 25} \mbox{cm}^2 $ is the Thomson cross section, $n$ is the electron density, $d$ is the distance passed by the photon. For the case of flat Universe $\rho  = \rho
+
where $\sigma _T\simeq6.65 \cdot 10^{ - 25} \mbox{cm}^2 $ is the Thomson cross section, $n$ is the electron density, $d$ is the distance traversed by the photon. For the case of flat Universe $\rho  = \rho
_{cr} $ and as the baryons contribution is of order of $4\% $ of total density then $N \simeq 2.3 \cdot 10^{ - 7} \mbox{cm}^{ - 3}.$ The passed distance is of order of observable part of Universe in the present time: $d \sim 10^{28} \mbox{cm}$ . As the result one obtains the following
+
_{cr} $ and as the baryons contribution is of order of $4\% $ of total density then $N \simeq 2.3 \cdot 10^{ - 7} \mbox{cm}^{ - 3}.$ The covered distance is of order of the observable part of the Universe at the present time: $d \sim 10^{28} \mbox{cm}$ . As the result one obtains
 
\[
 
\[
 
W \simeq 2 \cdot 10^{ - 3}  = 0.2\%.
 
W \simeq 2 \cdot 10^{ - 3}  = 0.2\%.
Line 85: Line 85:
 
<div id="cmb46n"></div>
 
<div id="cmb46n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 5 ===
+
=== Problem 5: Sunyaev-Zel'dovich effect on cosmic protons ===
 
Cosmic rays contain protons with energies up to $10^{20}eV$. What energy can be transmitted from such a proton to a photon of temperature $3K$?
 
Cosmic rays contain protons with energies up to $10^{20}eV$. What energy can be transmitted from such a proton to a photon of temperature $3K$?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 101: Line 101:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 107: Line 106:
 
<div id="cmb46"></div>
 
<div id="cmb46"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 6 ===
+
=== Problem 6: Sunyaev-Zel'dovich effect on intergalactic gas ===
 
Relic radiation passes through hot intergalactic gas and is scattered on the electrons. Estimate the CMB temperature variation due to the latter process (the Sunyaev-Zel'dovich effect).
 
Relic radiation passes through hot intergalactic gas and is scattered on the electrons. Estimate the CMB temperature variation due to the latter process (the Sunyaev-Zel'dovich effect).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 115: Line 114:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 126: Line 124:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">Let $\langle\Delta E\rangle $ is the average energy amount that is lost in the collision. it follows from the problem formulation that $E/mc^2\ll 1$ and $T/mc^2 \ll 1$ (in the units with k =1), so in the double series decomposition
+
     <p style="text-align: left;">Let $\langle\Delta E\rangle $ is the average energy amount that is lost in the collision. It follows from the problem formulation that $E/mc^2\ll 1$ and $T/mc^2 \ll 1$ (in the units with k =1), so in the double series decomposition
 
$$
 
$$
 
\langle\Delta E\rangle = mc^2[a_1+a_2(E/m)+a_3(T/m)+a_4(E^2/m^2)+a_5(ET/m^2)+a_6(T^2/m^2)+ \dots]
 
\langle\Delta E\rangle = mc^2[a_1+a_2(E/m)+a_3(T/m)+a_4(E^2/m^2)+a_5(ET/m^2)+a_6(T^2/m^2)+ \dots]
Line 138: Line 136:
 
\Delta E = (E^2/m)(1-\cos \theta).
 
\Delta E = (E^2/m)(1-\cos \theta).
 
$$
 
$$
Because the cross section is symmetric with respect to forward-backward direction, the term with $\cos\theta$ cancels in averaging over all angles and
+
Because the cross section is symmetric with respect to forward-backward direction, the term with $\cos\theta$ cancels on averaging over all angles and
 
$$
 
$$
 
\langle \Delta E\rangle = (E^2/m), ~T=0.
 
\langle \Delta E\rangle = (E^2/m), ~T=0.
Line 166: Line 164:
 
<div id="cmb39"></div>
 
<div id="cmb39"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 8 ===
+
=== Problem 8: drag force ===
 
Find the force acting on an electron moving through the CMB with velocity $v\ll c$.
 
Find the force acting on an electron moving through the CMB with velocity $v\ll c$.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 180: Line 178:
 
<div id="cmb40"></div>
 
<div id="cmb40"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 9 ===
+
=== Problem 9: dissipation ===
 
Estimate the characteristic time of energy loss by high-energy electrons with energy of order $100GeV$ passing through the CMB.
 
Estimate the characteristic time of energy loss by high-energy electrons with energy of order $100GeV$ passing through the CMB.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 194: Line 192:
 
<div id="cmb41"></div>
 
<div id="cmb41"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 10 ===
+
=== Problem 10: ultra high-energy cosmic rays cut-off ===
 
Find the energy limit above which the $\gamma$-rays interacting with the CMB should not be observed.
 
Find the energy limit above which the $\gamma$-rays interacting with the CMB should not be observed.
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>

Revision as of 21:02, 19 November 2012


Problem 1: free electron is invisible

Show that an isolated free electron can neither emit nor absorb a photon.


Problem 2: Compton effect

A photon of frequency $\omega$ interacts with an electron at rest and is scattered at angle $\vartheta$. Find the change of the photon's frequency.


Problem 3: inverse Compton

When a relativistic charged particle is scattered on a photon, the process is called the inverse Compton scattering of the photon. Consider the inverse Compton scattering in the case when a charged particle with rest mass $m$ and total energy $E\gg m$ in the laboratory frame interacts with a photon of frequency $\nu$. What is the maximum energy that the particle can transfer to the photon?


Problem 4: secondary scatterings

Estimate the probability of the fact that a photon observed on Earth has already experienced Thomson scattering since the moment it left the surface of last scattering.


Problem 5: Sunyaev-Zel'dovich effect on cosmic protons

Cosmic rays contain protons with energies up to $10^{20}eV$. What energy can be transmitted from such a proton to a photon of temperature $3K$?


Problem 6: Sunyaev-Zel'dovich effect on intergalactic gas

Relic radiation passes through hot intergalactic gas and is scattered on the electrons. Estimate the CMB temperature variation due to the latter process (the Sunyaev-Zel'dovich effect).


Problem 7

A photon with energy $E\ll mc^2$ undergoes collisions and Compton scattering in the electron gas with temperature $kT\ll mc^2$. Show that to the leading order in $E$ and $T$ the average energy lost by photons in collisions takes the form \[\langle\Delta E\rangle=\frac{E}{mc^2}(E-4kT).\]



Problem 8: drag force

Find the force acting on an electron moving through the CMB with velocity $v\ll c$.



Problem 9: dissipation

Estimate the characteristic time of energy loss by high-energy electrons with energy of order $100GeV$ passing through the CMB.



Problem 10: ultra high-energy cosmic rays cut-off

Find the energy limit above which the $\gamma$-rays interacting with the CMB should not be observed.