Difference between revisions of "Characteristic Parameters and Scales"

From Universe in Problems
Jump to: navigation, search
(Problem 2)
Line 31: Line 31:
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;">
 
     <p style="text-align: left;">
\begin{eqnarray}
+
$$
   N &=& \frac{M}{m_n}=\frac{\frac{4}{3}\pi \left( \frac{c}{H_0} \right)^3\rho }{m_n}=\frac{\frac{4}{3}\pi \alpha \left( \frac{c}{H_0}\right)^3\frac{3H_0^2}{8\pi G}}{m_n}= \\
+
   N = \frac{M}{m_n}=\frac{\frac{4}{3}\pi \left( \frac{c}{H_0} \right)^3\rho }{m_n}=\frac{\frac{4}{3}\pi \alpha \left( \frac{c}{H_0}\right)^3\frac{3H_0^2}{8\pi G}}{m_n}= \frac{1}{2}\alpha \frac{H_0^2}{Gm_n}\left( \frac{c}{H_0} \right)^3=\frac{1}{2}\alpha \frac{M_{Pl}}{m_n}\frac{M_{Pl}c^2}{\hbar H_0}\simeq 10^{80}\quad (\alpha \simeq 0.04)
  &=& \frac{1}{2}\alpha \frac{H_0^2}{Gm_n}\left( \frac{c}{H_0} \right)^3=\frac{1}{2}\alpha \frac{M_{Pl}}{m_n}\frac{M_{Pl}c^2}{\hbar H_0}\simeq 10^{80}\quad (\alpha \simeq 0.04)
+
$$
\end{eqnarray}
+
 
</p>
 
</p>
 
   </div>
 
   </div>
Line 43: Line 42:
 
<div id="SCM_2"></div>
 
<div id="SCM_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 3 ===
 
=== Problem 3 ===
 
Find dependence of relative density of dark energy $\Omega_\Lambda$ on the redshift. Plot $\Omega_\Lambda(z)$.
 
Find dependence of relative density of dark energy $\Omega_\Lambda$ on the redshift. Plot $\Omega_\Lambda(z)$.

Revision as of 16:40, 4 October 2012



Problem 1

Calculate the dark energy density and the cosmological constant value.


Problem 2

Estimate total number of baryons in the Universe.


Problem 3

Find dependence of relative density of dark energy $\Omega_\Lambda$ on the redshift. Plot $\Omega_\Lambda(z)$.


Problem 4

Estimate total number of stars in the Universe.


Problem 5

Find the ratio of dark energy density to the energy density of electric field of intensity $1\,V/m$. Compare the dark energy density with gravitational field energy density on the Earth surface.


Problem 6

Estimate the distance between two neutral hydrogen atoms at which the gravitational force of their attraction is balanced by the repulsion force generated by dark energy in the form of cosmological constant. Make the same estimates for the Sun-Earth system.


Problem 7

Calculate magnitude of physical acceleration.



Problem 8

How far can one see in the Universe?


Problem 9

Find age of the Universe.



Problem 10

Give a qualitative explanation why the age of Universe in SCM is considerably greater than the age of matter dominated Universe (Einstein-de Sitter model).