Difference between revisions of "Cosmological Inflation: The Canonic Theory"

From Universe in Problems
Jump to: navigation, search
(Problem 46)
(Problem 27)
 
(17 intermediate revisions by the same user not shown)
Line 168: Line 168:
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;">\[\begin{gathered}
 
     <p style="text-align: left;">\[\begin{gathered}
   S = {S_g} + {S_\varphi };~ {S_g} =  - \frac{1}{2}\int {{d^4}x\sqrt { - g} R;} ~
+
   S = {S_g} + {S_\varphi };\quad {S_g} =  - \frac{1}{2}\int {{d^4}x\sqrt { - g} R;} \quad
 
   R = {g^{\mu \nu }}(x){R_{\mu \nu }}(x);  \\
 
   R = {g^{\mu \nu }}(x){R_{\mu \nu }}(x);  \\
 
   {S_\varphi } = \int {{d^4}x\sqrt { - g} \left( {\frac{1}{2}{g^{\mu \nu }}{\partial _\mu }\varphi {\partial _\nu }\varphi  - V\left( \varphi  \right)} \right)} ; \\
 
   {S_\varphi } = \int {{d^4}x\sqrt { - g} \left( {\frac{1}{2}{g^{\mu \nu }}{\partial _\mu }\varphi {\partial _\nu }\varphi  - V\left( \varphi  \right)} \right)} ; \\
 
   L =  - \frac{1}{2}\sqrt { - g} R + \sqrt { - g} \left( {\frac{1}{2}{g^{\mu \nu }}{\partial _\mu }\varphi {\partial _\nu }\varphi  - V\left( \varphi  \right)} \right); \\
 
   L =  - \frac{1}{2}\sqrt { - g} R + \sqrt { - g} \left( {\frac{1}{2}{g^{\mu \nu }}{\partial _\mu }\varphi {\partial _\nu }\varphi  - V\left( \varphi  \right)} \right); \\
   R =  - 6\left( {\frac{\ddot a}{a} + \frac{{\dot a}^2}{a^2} + \frac{k}{a^2}} \right);~ \sqrt { - g}  \propto {a^3}; \\
+
   R =  - 6\left( {\frac{\ddot a}{a} + \frac{{\dot a}^2}{a^2} + \frac{k}{a^2}} \right);\quad \sqrt { - g}  \propto {a^3}; \\
 
   L = 3\left( {{a^2}\ddot a + a{{\dot a}^2} + ak} \right) + {a^3}\left( {\frac{1}{2}{{\dot \varphi }^2} - V\left( \varphi  \right)} \right); \\
 
   L = 3\left( {{a^2}\ddot a + a{{\dot a}^2} + ak} \right) + {a^3}\left( {\frac{1}{2}{{\dot \varphi }^2} - V\left( \varphi  \right)} \right); \\
 
   {a^2}\ddot a = \frac{d}{dt}\dot a{a^2} - 2a{{\dot a}^2}; \\
 
   {a^2}\ddot a = \frac{d}{dt}\dot a{a^2} - 2a{{\dot a}^2}; \\
Line 195: Line 195:
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;">
 
     <p style="text-align: left;">
Substitute into the conservation equation the following
+
After the substitution of explicit expressions for energy density and pressure
 
$$
 
$$
 
\begin{gathered}
 
\begin{gathered}
Line 202: Line 202:
 
\end{gathered}
 
\end{gathered}
 
$$
 
$$
to obtain the required equation
+
one obtains
 
$$
 
$$
 
\ddot \varphi + 3H\dot \varphi + V'(\varphi ) = 0.
 
\ddot \varphi + 3H\dot \varphi + V'(\varphi ) = 0.
Line 246: Line 246:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">From the equation $\dot{H}=-4\pi G(p+\rho),$ obtained in the problem \ref{equ35} of Chapter 2, one finds that $\dot{H}=-4\pi G\dot{\varphi}^2$. Then one obtains
+
     <p style="text-align: left;">From the equation $\dot{H}=-4\pi G(p+\rho),$ obtained in the problem \ref{equ35} of Chapter 2, one finds that $\dot{H}=-4\pi G\dot{\varphi}^2$. Then  
 
$$V=\frac{3H^2}{8\pi G}\left(1+\frac{\dot{H}}{3H^2}\right)$$ $$\varphi = \int dt \left( -\frac{\dot{H}}{4\pi G}\right)^{1/2}.$$</p>
 
$$V=\frac{3H^2}{8\pi G}\left(1+\frac{\dot{H}}{3H^2}\right)$$ $$\varphi = \int dt \left( -\frac{\dot{H}}{4\pi G}\right)^{1/2}.$$</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
 
 
  
 
<div id="inf14"></div>
 
<div id="inf14"></div>
Line 263: Line 260:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">The first equation is precisely the first Friedman equation with inserted energy density of scalar field. To obtain the second equation differentiate with respect to time the definition of hubble parameter:
+
     <p style="text-align: left;">The first equation is precisely the first Friedman equation with the energy density of scalar field. To obtain the second equation differentiate with respect to time the definition of Hubble parameter:
 
$$\displaystyle \begin{array}{l}
 
$$\displaystyle \begin{array}{l}
 
\displaystyle H = \frac{\dot a}{a};\quad \dot H = \frac{\ddot aa - \dot a^2 }{a^2 } = \frac{\ddot a}{a} - \frac{\dot a^2 }{a^2 } = \\
 
\displaystyle H = \frac{\dot a}{a};\quad \dot H = \frac{\ddot aa - \dot a^2 }{a^2 } = \frac{\ddot a}{a} - \frac{\dot a^2 }{a^2 } = \\
Line 318: Line 315:
 
Substitute it into the first equation of the system to obtain
 
Substitute it into the first equation of the system to obtain
 
$$
 
$$
H'^2 - 12\pi GH^2 = - 32\pi ^2 G^2 V\left( \varphi \right)
+
H'^2 - 12\pi GH^2 = - 32\pi ^2 G^2 V\left( \varphi \right).
 
$$
 
$$
 
The system of first-order equations
 
The system of first-order equations
Line 350: Line 347:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 12 ===
 
=== Problem 12 ===
Express the equations for the scalar field in terms of conformal time.
+
Rewrite the equations for the scalar field in terms of conformal time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 359: Line 356:
 
$$
 
$$
  
$$
 
H^2 = \frac{8\pi G}{3}\left( {\frac{1}{2}\dot \varphi ^2 + V(\varphi )} \right),
 
$$
 
$$
 
\dot H = - 4\pi G\dot \varphi ^2
 
$$
 
 
$$
 
$$
 
\begin{array}{l}
 
\begin{array}{l}
 +
H^2 = \frac{8\pi G}{3}\left( {\frac{1}{2}\dot \varphi ^2 + V(\varphi )} \right),\\
 +
\dot H = - 4\pi G\dot \varphi ^2\\
 
\displaystyle dt = ad\eta;~\frac{d}{dt} = \frac{d\eta }{dt}\frac{1}{d\eta } = \frac{1}{a}\frac{1}{d\eta },\\
 
\displaystyle dt = ad\eta;~\frac{d}{dt} = \frac{d\eta }{dt}\frac{1}{d\eta } = \frac{1}{a}\frac{1}{d\eta },\\
 
\displaystyle \dot \varphi = \frac{1}{a}\frac{d\varphi }{d\eta } = \frac{1}{a}\varphi'. \\
 
\displaystyle \dot \varphi = \frac{1}{a}\frac{d\varphi }{d\eta } = \frac{1}{a}\varphi'. \\
 
\end{array}
 
\end{array}
 
$$
 
$$
Direct using of these expressions enables us to transform the initial system into the following
+
Then
 
$$
 
$$
 
\begin{array}{l}
 
\begin{array}{l}
Line 380: Line 373:
 
\end{array}
 
\end{array}
 
$$
 
$$
The prime denotes differentiation with respect to conformal time.</p>
+
where the prime denotes differentiation with respect to conformal time.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 396: Line 389:
 
     <p style="text-align: left;">$$
 
     <p style="text-align: left;">$$
 
\begin{array}{l}
 
\begin{array}{l}
\displaystyle H = \frac{\dot a}{a};~\dot H = \frac{\ddot aa - \dot a^2 }{a^2 } = \frac{\ddot a}{a} - H^2,\\
+
\displaystyle H = \frac{\dot a}{a};\quad \dot H = \frac{\ddot aa - \dot a^2 }{a^2 } = \frac{\ddot a}{a} - H^2,\\
\displaystyle H^2 = \frac{8\pi G}{3}\rho ;\;\frac{\ddot a}{a} = - \frac{4\pi G}{3}(\rho + 3p), \\
+
\displaystyle H^2 = \frac{8\pi G}{3}\rho ;\quad \frac{\ddot a}{a} = - \frac{4\pi G}{3}(\rho + 3p), \\
\displaystyle \dot H > 0 \to p < - \rho. \\
+
\displaystyle \dot H > 0 \Rightarrow p < - \rho. \\
 
\end{array}
 
\end{array}
 
$$
 
$$
Satisfaction of the latter condition is impossible for a scalar field with positively defined kinetic energy.
+
The latter condition is impossible to satisfy for a scalar field with positively defined kinetic energy.
 
</p>
 
</p>
 
   </div>
 
   </div>
Line 449: Line 442:
 
$$
 
$$
 
x_{\varphi}=\frac{1+w_{\varphi}}{1-w_{\varphi}},
 
x_{\varphi}=\frac{1+w_{\varphi}}{1-w_{\varphi}},
~w_{\varphi}=\frac{\dot{\varphi}^2+2V(\varphi)}{\dot{\varphi}^2-2V(\varphi)},
+
\quad w_{\varphi}=\frac{\dot{\varphi}^2+2V(\varphi)}{\dot{\varphi}^2-2V(\varphi)},
 
$$ in the system of units such that $8\pi G=1.$
 
$$ in the system of units such that $8\pi G=1.$
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 469: Line 462:
 
  \frac{V_{,\varphi}}{V} =-6\frac{H}{\dot{\varphi}}\left(\frac{x_{\varphi}}{1+ x_{\varphi}}\right)\left[1 + \frac{1}{6}\frac{d\ln \left( x_{\varphi} \right)}{d\ln a} \right].
 
  \frac{V_{,\varphi}}{V} =-6\frac{H}{\dot{\varphi}}\left(\frac{x_{\varphi}}{1+ x_{\varphi}}\right)\left[1 + \frac{1}{6}\frac{d\ln \left( x_{\varphi} \right)}{d\ln a} \right].
 
$$
 
$$
As \[\frac{x_{\varphi}}{1+ x_{\varphi}} = \frac{1+ w_{\varphi}}{2}\] then
+
As \[\frac{x_{\varphi}}{1+ x_{\varphi}} = \frac{1+ w_{\varphi}}{2},\] we have
 
$$
 
$$
 
  \frac{V_{,\varphi}}{V} =-3(1+w_{\varphi})\frac{H}{\dot{\varphi}}\left[1 + \frac{1}{6}\frac{d\ln \left( x_{\varphi} \right)}{d\ln a} \right].
 
  \frac{V_{,\varphi}}{V} =-3(1+w_{\varphi})\frac{H}{\dot{\varphi}}\left[1 + \frac{1}{6}\frac{d\ln \left( x_{\varphi} \right)}{d\ln a} \right].
Line 475: Line 468:
 
Note that $\rho_\varphi=\frac{\dot{\varphi}^2}{2}+V(\varphi)= (1+x_\varphi)=\frac{2V(\varphi)}{1-w_\varphi};~ H^2=\frac 13 \rho_{cr},~\dot{\varphi} = \pm\sqrt{2Vx_\varphi}$ and therefore
 
Note that $\rho_\varphi=\frac{\dot{\varphi}^2}{2}+V(\varphi)= (1+x_\varphi)=\frac{2V(\varphi)}{1-w_\varphi};~ H^2=\frac 13 \rho_{cr},~\dot{\varphi} = \pm\sqrt{2Vx_\varphi}$ and therefore
 
$$
 
$$
\Omega_\varphi = \frac{\rho_\varphi}{\rho_{cr}} = \frac{2}{3}\frac{V}{H^2(1-w_\varphi)},
+
\begin{array}{l}
$$
+
\Omega_\varphi = \frac{\rho_\varphi}{\rho_{cr}} = \frac{2}{3}\frac{V}{H^2(1-w_\varphi)},\\
$$
+
 
\pm \frac{V_{,\varphi}}{V} = \sqrt {\frac{3(1 + w)}{\Omega _\varphi(a)}} \left[ 1 + \frac{1}{6}\frac{d\ln \left( x_{\varphi} \right)}{d\ln a} \right].
 
\pm \frac{V_{,\varphi}}{V} = \sqrt {\frac{3(1 + w)}{\Omega _\varphi(a)}} \left[ 1 + \frac{1}{6}\frac{d\ln \left( x_{\varphi} \right)}{d\ln a} \right].
 +
\end{array}
 
$$</p>
 
$$</p>
 
   </div>
 
   </div>
Line 497: Line 490:
 
$$
 
$$
 
one obtains
 
one obtains
$$
 
dE = Vd\rho + \rho dV,
 
$$
 
 
\begin{equation}
 
\begin{equation}
\label{enthropy}
+
\begin{array}{l}
Vd\rho + (\rho + p)dV = 0.
+
dE = Vd\rho + \rho dV,\\
 +
Vd\rho + (\rho + p)dV = 0.\label{entropy_2}
 +
\end{array}
 
\end{equation}
 
\end{equation}
 
Use the definition for $\rho $ and $p$ to obtain
 
Use the definition for $\rho $ and $p$ to obtain
Line 511: Line 503:
 
\end{array}
 
\end{array}
 
$$
 
$$
Substitute it into \ref{enthropy} to obtain the equation for scalar field ïîëÿ
+
Substitute it into \ref{entropy_2} to obtain the equation for scalar field  
 
$$
 
$$
 
\ddot \varphi + 3H\dot \varphi + V'(\varphi ) = 0.
 
\ddot \varphi + 3H\dot \varphi + V'(\varphi ) = 0.
Line 716: Line 708:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">For the case of homogeneous and isotropic Universe with scalar field coordinates one gets
+
     <p style="text-align: left;">For the case of homogeneous and isotropic Universe with scalar field one gets
 
$$
 
$$
 
\begin{array}{l}
 
\begin{array}{l}
Line 1,193: Line 1,185:
 
$$
 
$$
 
\begin{align}
 
\begin{align}
& \mbox{for matter} & w & = & 0 & \Rightarrow x=e^{N},\\
+
& \mbox{for matter} & w & = 0 & &\Rightarrow x=e^{N},\\
& \mbox{for radiation} & w & = & 1/3 & \Rightarrow x=e^{2N},\\
+
& \mbox{for radiation} & w & = 1/3 & &\Rightarrow x=e^{2N},\\
 
\end{align}
 
\end{align}
 
$$
 
$$
Line 1,219: Line 1,211:
 
\begin{array}{l}
 
\begin{array}{l}
 
\displaystyle L_p (t) = a(t)\int_0^t {\frac{dt'}{a(t')}},\\
 
\displaystyle L_p (t) = a(t)\int_0^t {\frac{dt'}{a(t')}},\\
\displaystyle a(t) \propto e^{Ht} \to L_p (t) = \frac{1}{H}\left( {e^{Ht} - 1} \right).\\
+
\displaystyle a(t) \propto e^{Ht} \quad\Rightarrow\quad L_p (t) = \frac{1}{H}\left( {e^{Ht} - 1} \right).\\
 
\end{array}
 
\end{array}
 
$$</p>
 
$$</p>
Line 1,236: Line 1,228:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">Assume that the inflation started at $t_i = 10^{ - 38}~\mbox{sec}$ and stopped at $t_f = 10^{ - 36}~\mbox{sec}$. Before start of the inflation the universe was dominated by radiation and the particle horizon at that time was equal to
+
     <p style="text-align: left;">Assume that the inflation started at $t_i = 10^{ - 38}~\mbox{sec}$ and stopped at $t_f = 10^{ - 36}~\mbox{sec}$. Before the start of inflation the Universe was dominated by radiation and the particle horizon at that time was equal to
 
$$
 
$$
 
L_p = 2t_i = 2 \cdot 3 \cdot 10^{10} \mbox{cm}\,c^{ - 1} \cdot 10^{ - 38} c = 6 \cdot 10^{ - 28}\mbox{ cm}.
 
L_p = 2t_i = 2 \cdot 3 \cdot 10^{10} \mbox{cm}\,c^{ - 1} \cdot 10^{ - 38} c = 6 \cdot 10^{ - 28}\mbox{ cm}.
 
$$
 
$$
It is the maximum size of the region where the thermal equilibrium could be established before the start of inflation. During the inflation this region increased in $e^N $ times, and then endured further expansion in radiation-dominated and matter-dominated epochs. At present this region has the size
+
It is the maximum size of the region where the thermal equilibrium could be established before the start of inflation. During inflation this region increased $e^N $ times, and then endured further expansion in radiation-dominated and matter-dominated epochs. At present this region has the size
 
$$
 
$$
 
l_0 \approx L_p (t_i )e^N \left( {\frac{t_{eq} }{t_f }} \right)^{1/2} \left( {\frac{t_0 }{t_{eq}}} \right)^{1/2}.
 
l_0 \approx L_p (t_i )e^N \left( {\frac{t_{eq} }{t_f }} \right)^{1/2} \left( {\frac{t_0 }{t_{eq}}} \right)^{1/2}.
 
$$
 
$$
 
Choosing value $N \approx 100$ (sufficiently ''modest'' estimate) and using the above cited values $t_{eq}$
 
Choosing value $N \approx 100$ (sufficiently ''modest'' estimate) and using the above cited values $t_{eq}$
and $t_0$, one obtins
+
and $t_0$, one obtains
 
$$
 
$$
l_0 \approx 10^{40} \mbox{cm}
+
l_0 \approx 10^{40} \mbox{cm}.
 
$$
 
$$
This value considerable exceeds the size of presently observed Universe $l \approx 10^{28} \mbox{ cm}$ and therefore the horizon problem is solved.</p>
+
This value considerably exceeds the size of presently observed Universe $l \approx 10^{28} \mbox{ cm}$ and therefore the horizon problem is solved.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,258: Line 1,250:
 
<div id="inf56"></div>
 
<div id="inf56"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 49 ===
 
=== Problem 49 ===
 
Did entropy change during the inflation period? If yes, then estimate what its change was.
 
Did entropy change during the inflation period? If yes, then estimate what its change was.
Line 1,273: Line 1,266:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 50 ===
 
=== Problem 50 ===
Does the inflation theory explain the modern value of entropy?
+
Does the inflation theory explain the modern value of entropy of the Universe?
 
<!-- <div class="NavFrame collapsed">
 
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 1,286: Line 1,279:
 
<div id="inf45"></div>
 
<div id="inf45"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 51 ===
 
=== Problem 51 ===
Find the solution of the monopole problem in frame of inflation theory.
+
Find the solution of the monopole problem in the frame of inflation theory.
 
<!-- <div class="NavFrame collapsed">
 
<!-- <div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>

Latest revision as of 10:06, 27 August 2013


Inflation hasn't won the race,
But so far it's the only horse
Andrei Linde.



Scalar Field In Cosmology

Problem 1

A scalar field $\varphi(\vec r,t)$ in a potential $V(\varphi)$ on flat background is described by Lagrangian \[L=\frac12\left(\dot\varphi^2-\nabla\varphi\cdot\nabla\varphi\right)-V(\varphi)\] Obtain the equation of motion (evolution) for this field from the least action principle.


Problem 2

Rewrite the action for free scalar field minimally coupled to gravitation \[S_\varphi=\int d^4x\sqrt{-g}\left(\frac12 g^{\mu\nu}\partial_\mu\varphi\partial_\nu\varphi\right)\] for the case of FLRW metric.


Problem 3

Using the action obtained in the previous problem, obtain the evolution equation for the scalar field in the expanding Universe.


Problem 4

Calculate the density and pressure of homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ in the FLRW metric.


Problem 5

Starting from the scalar field's action in the form \[ S = \int {d^4 x\sqrt { - g} \left[ {{1 \over 2}(\nabla \varphi )^2 - V(\varphi )} \right]} \] obtain the equation of motion for this field for the case of FLRW metric.



Problem 6

Construct the Lagrange function describing the dynamics of the Universe filled with a scalar field in potential $V(\varphi)$. Using the obtained Lagrangian, obtain the Friedman equations and the Klein--Gordon equation.



Problem 7

Obtain the equation of motion for a homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ starting from the conservation equation \[\dot\rho+3\frac{\dot a}{a}(\rho+p)=0.\]



Problem 8

Obtain the equation of motion for the homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ using the analogy with Newtonian dynamics.



Problem 9

Express $V(\varphi)$ and $\varphi$ through the Hubble parameter $H$ and its derivative $\dot{H}$ for the Universe filled with quintessence.

Problem 10

Show that Friedman equations for the scalar field $\varphi(t)$ in potential $V(\varphi)$ can be presented in the form \[H^2=\frac{8\pi G}{3}\left(\frac12 \dot\varphi^2+V(\varphi)\right),\] \[\dot H=-4\pi G\dot\varphi^2.\]



Problem 11

Provided that the scalar field $\varphi(t)$ is a single--valued function of time, transform the second order equation for the scalar field into a system of first order equations.



Problem 12

Rewrite the equations for the scalar field in terms of conformal time.



Problem 13

Show that condition $\dot H>0$ cannot be realized for the scalar field with positively defined kinetic energy.



Problem 14

Show that the Klein--Gordon equation could be rewritten in dimensionless form $$ \varphi '' + \left( {2 - q} \right)\varphi ' = \chi ;\quad \chi \equiv - \frac{1}{H^2 }\frac{dV}{d\varphi }, $$ where prime denotes the derivative by $\ln a$, and $q = - {{a\ddot a} / {\dot a^2 }}$ is the deceleration parameter.



Problem 15

Represent the equation of motion for the scalar field in the form $$ \pm \frac{V_{,\varphi}}{V} = \sqrt {\frac{3(1 + w)}{\Omega _\varphi(a)}} \left[ 1 + \frac{1}{6}\frac{d\ln \left( x_{\varphi} \right)}{d\ln a} \right], $$ where $$ x_{\varphi}=\frac{1+w_{\varphi}}{1-w_{\varphi}}, \quad w_{\varphi}=\frac{\dot{\varphi}^2+2V(\varphi)}{\dot{\varphi}^2-2V(\varphi)}, $$ in the system of units such that $8\pi G=1.$


Problem 16

The term $3H\dot{\varphi}$ in the equation for the scalar field formally acts as friction that damps the inflation. Show that, nonetheless, this term does not lead to dissipative energy production.


Problem 17

Obtain the system of equations describing the scalar field dynamics in the expanding Universe containing radiation and matter in the conformal time.


Problem 18

Calculate the pressure of homogeneous scalar field in the potential $V(\varphi)$ using the obtained above energy density of the field and its equation of motion.


Problem 19

What condition should the homogeneous scalar field $\varphi(t)$ in potential $V(\varphi)$ satisfy in order to provide accelerated expansion of the Universe?


Problem 20

What conditions should the scalar field satisfy in order to provide expansion of the Universe close to the exponential one?

Introduction to Inflation

Problem 21

What considerations led A.Guth to name his theory describing the early Universe's dynamics as inflation theory?


Problem 22

A. Vilenkin in his cosmological bestseller Many world in one remembers: On a Wednesday afternoon, in the winter of 1980, I was sitting in a fully packed Harvard auditorium, listening to the most fascinating talk I had heard in many years. The speaker was Alan Guth, a young physicist from Stanford, and the topic was a new theory for the origin of the universe$\ldots$ The beauty of the idea was that in a single shot inflation explained why the universe is so big, why it is expanding, and why it was so hot at the beginning. A huge expanding universe was produced from almost nothing. All that was needed was a microscopic chunk of repulsive gravity material. Guth admitted he did not know where the initial chunk came from, but that detail could be worked out later. It's often said that you cannot get something for nothing. he said, but the universe may be the ultimate free lunch . Explain, why can this be.


Problem 23

Is energy conservation violated during the inflation?


Problem 24

Inflation is defined as any epoch for which the scale factor of the Universe has accelerated growth, i.e. $\ddot{a}>0$. Show that this condition is equivalent to requirement that the comoving Hubble radius decreases with time.


Problem 25

Show that in the process of inflation the curvature term in the Friedman equation becomes negligible. Even if that condition was not initially satisfied, the inflation quickly realizes it.


Problem 26

It is sometimes said, that the choice of $k = 0$ is motivated by observations: the density of curvature is close to zero. Is this claim correct?

Inflation in the Slow-Roll Regime

Problem 27

Obtain the evolution equations for the scalar field in expanding Universe in the inflationary slow-roll regime.


Problem 28

Find the time dependence of scale factor in the slow--roll regime for the case $V(\varphi)={m^2 \varphi^2 / 2}$.


Problem 29

Find the dependence of scale factor on the scalar field in the slow-roll regime.


Problem 30

Show that the conditions for realization of the slow--roll limit can be presented in the form: \[\varepsilon(\varphi)\equiv\frac{M^{*2}_{Pl}}{2}\left(\frac{V^\prime}{V}\right)^2\ll1; \ |\eta(\varphi)|\equiv\left|M^{*2}_{Pl}\frac{V^{\prime\prime}}{V}\right|\ll1; \ M^*_{Pl}\equiv(8\pi G)^{-1/2}.\]


Problem 31

Show that the condition $\varepsilon\ll1$ for the realization of the slow--roll limit obtained in the previous problem is also the sufficient condition for inflation.


Problem 32

Find the slow--roll condition for power law potentials.


Problem 33

Show that the condition $\varepsilon \ll\eta$ is satisfied in the vicinity of inflection point of the inflationary potential $V(\varphi)$.


Problem 34

Show that the inflation parameter $\varepsilon$ can be expressed through the state equation parameter $w$ for the scalar field.



Problem 35

Show that the second Friedman equation \[\frac{\ddot{a}}{a}=-\frac{4\pi G}{3}(\rho+3p)\] can be presented in the form \[\frac{\ddot{a}}{a}=H^2(1-\varepsilon).\]



Problem 36

Show that in the slow--roll regime $\varepsilon_H\rightarrow\varepsilon$ and $\eta_H\rightarrow\eta-\varepsilon$.



Problem 37

Show that the inflation parameters $\varepsilon_H,\ \eta_H$ can be presented in the following symmetric form \[\varepsilon_H=-\frac{d\ln H}{d\ln a};\ \eta_H=-\frac{d\ln H'}{d\ln a}.\]



Problem 38

Prove that condition $\ddot a>0$, which defines inflation, is equivalent to $\varepsilon_H<1$.



Problem 39

Show that inflation appears every time when the scalar field's value exceeds the Planck mass.



Problem 40

Find the energy momentum tensor for homogeneous scalar field in the slow--roll regime.

Solution of the Hot Big Bang Theory Problems

Problem 41

Show that in the inflation epoch the relative density $\Omega$ exponentially tends to unity.



Problem 42

Estimate the temperature of the Universe at the end of inflation.



Problem 43

Estimate the size of the Universe at the end of inflation.



Problem 44

Find the number $N_e$ of $e$-foldings of the scale factor during the inflation epoch.



Problem 45

Find the number $N_e$ of $e$-foldings of the scale factor for the inflation process near the inflection point.



Problem 46

Show that inflation transforms the unstable fixed point $x=0$ for the quantity \[x\equiv\frac{\Omega-1}{\Omega}\] into the stable one, therefore solving the problem of the flatness of the Universe.



Problem 47

Find the particle horizon in the inflationary regime, assuming $H\approx const$.



Problem 48

Find the solution of the horizon problem in the framework of inflation theory.



Problem 49

Did entropy change during the inflation period? If yes, then estimate what its change was.



Problem 50

Does the inflation theory explain the modern value of entropy of the Universe?



Problem 51

Find the solution of the monopole problem in the frame of inflation theory.