Difference between revisions of "Cosmological models with a change of the direction of energy transfer"

From Universe in Problems
Jump to: navigation, search
 
Line 42: Line 42:
 
<div id="IDE_30"></div>
 
<div id="IDE_30"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 2 ===
 
Find deceleration parameter for the case $\alpha=0$ in the model considered in the previous problem.
 
Find deceleration parameter for the case $\alpha=0$ in the model considered in the previous problem.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 67: Line 67:
 
<div id="IDE_31"></div>
 
<div id="IDE_31"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 3 ===
 
Consider the model $Q=q(\alpha\dot\rho_\Lambda+3\beta H\rho_\Lambda)$. Obtain the Hubble parameter $H(a)$ and deceleration parameter for the case $\alpha=0$.
 
Consider the model $Q=q(\alpha\dot\rho_\Lambda+3\beta H\rho_\Lambda)$. Obtain the Hubble parameter $H(a)$ and deceleration parameter for the case $\alpha=0$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">

Latest revision as of 10:43, 8 November 2013


Let us consider one more type of interaction $Q$, whose sign (i.e., the direction of energy transfer) changes when the mode of decelerated expansion is replaced by the mode of accelerated expansion, and vice versa. The simplest interaction of this type is the one proportional to the deceleration parameter. An example of such interaction is \[Q=q(\alpha\dot\rho+\beta H\rho),\] where $\alpha$ and $\beta$ are dimensionless constants, and $\rho$ can be any of densities $\rho_{de}$, $\rho_{dm}$ or $\rho_{tot}$. In the following problems for simplicity we restrict ourselves to the decaying $\Lambda$ model, for which $\dot\rho_{de}=\dot\rho_\Lambda=-Q$ and $p_{de}=-\rho_{de}$. (after [1])





Problem 1

Construct general procedure to the Hubble parameter and the deceleratio parameter for the case \(Q=q(\alpha\dot\rho_{dm}+\beta H\rho_{dm})\).


Problem 2

Find deceleration parameter for the case $\alpha=0$ in the model considered in the previous problem.


Problem 3

Consider the model $Q=q(\alpha\dot\rho_\Lambda+3\beta H\rho_\Lambda)$. Obtain the Hubble parameter $H(a)$ and deceleration parameter for the case $\alpha=0$.