Difference between revisions of "Dark Matter Halo"

From Universe in Problems
Jump to: navigation, search
Line 12: Line 12:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">\[
+
     <p style="text-align: left;">\[M_g  = 4\pi \int_0^{R_g } {\rho_g (r)} r^2 dr = 4\pi
M_g  = 4\pi \int_0^{R_g } {\rho_g (r)} r^2 dr = 4\pi
+
CR_g\Rightarrow\rho_g  = \frac{M_g}{4\pi R_g r^2}.\]
CR_g\Rightarrow\rho_g  = \frac{{M_g }}{{4\pi R_g r^2 }}.
+
\]
+
  
For $M_g\sim 10^{11} M_ \odot  ,\;R_g  \sim 10\mbox{\it kpc},\;r
+
For $M_g\sim 10^{11} M_ \odot  ,\;R_g  \sim 10\mbox{kpc},\;r\sim 6.7\mbox{kpc}$
\sim 6.7\mbox{\it kpc}$
+
 
and assuming that the dark matter dominates in the halo, one obtains
 
and assuming that the dark matter dominates in the halo, one obtains
\[
+
\[\rho _g  \approx \rho _{_{DM}}  \sim 10^{ - 25} \mbox{g/cm}^3\approx 0.2\mbox{ GeV/cm}^3.\]</p>
\rho _g  \approx \rho _{_{DM}}  \sim 10^{ - 25} \mbox{\it g/cm}^3
+
\approx 0.2\mbox{\it GeV/cm}^3.
+
\]</p>
+
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 108: Line 102:
 
} } \]
 
} } \]
  
For $v_\infty  = 220\mbox{\it km/s},\;r_c  = 2.6\mbox{\it
+
For $v_\infty  = 220\mbox{km/s},\;r_c  = 2.6\mbox{kpc},\,r_0 = 8\mbox{kpc}$
kpc},\,r_0 = 8\mbox{\it kpc}$
+
 
one obtains $\rho_0 \approx
 
one obtains $\rho_0 \approx
5 \times 10^{ - 25} \mbox{\it g/cm}^3 \approx 0.3\,\mbox{\it
+
5 \times 10^{ - 25} \mbox{g/cm}^3 \approx 0.3\,\mbox{GeV/cm}^3 $. The dependencies $\rho \left( r \right)$ and $v(r)$
GeV/cm}^3 $. The dependencies $\rho \left( r \right)$ and $v(r)$
+
 
are plotted on Figure.
 
are plotted on Figure.
 
<gallery widths=600px heights=400px>
 
<gallery widths=600px heights=400px>

Revision as of 09:55, 4 October 2012




Problem 1

Estimate the local density of the dark halo in the vicinity of the Earth, assuming that its density decreases as $\rho_g=C/r^2$.


Problem 1

Build the model of the spherically symmetric dark halo density corresponding to the observed galactic rotation curves.


Problem 1

In frames of the halo model considered in the previous problem determine the local dark matter density $\rho_0$ basing on the given rotation velocities of satellite galaxies at the outer border of the halo $v_\infty\equiv v(r\rightarrow\infty)$ and in some point $r_0$.


Problem 1

For the halo model considered in problem \ref{halo_model} obtain the dependencies $\rho(r)$ and $v(r)$ in terms of $\rho_0$ and $v_\infty$. Plot the dependencies $\rho(r)$ and $v(r)$.


Problem 1

Many clusters are sources of X-ray radiation. It is emitted by the hot intergalactic gas filling the cluster volume. Assuming that the hot gas ($kT\approx10keV$) is in equilibrium in the cluster with linear size $R=2.5Mpc$ and core radius $r_c=0.25Mpc$, estimate the mass of the cluster.