Difference between revisions of "Dark Matter Halo"

From Universe in Problems
Jump to: navigation, search
(Problem 2)
(Problem 5)
 
(6 intermediate revisions by the same user not shown)
Line 53: Line 53:
 
     <p style="text-align: left;">Let some satellite galaxy orbits on the distance $r$ from the center of the main galaxy of mass $M\left( r \right)$ with velocity $v (r)$, then
 
     <p style="text-align: left;">Let some satellite galaxy orbits on the distance $r$ from the center of the main galaxy of mass $M\left( r \right)$ with velocity $v (r)$, then
 
\[
 
\[
\frac{{v^2 }}{r} = G\frac{{M(r)}}{{r^2 }}.
+
\frac{v^2}{r} = G\frac{M(r)}{r^2}.
 
\]
 
\]
 
As
 
As
Line 60: Line 60:
 
\]
 
\]
 
then substitution of the expression for $\rho
 
then substitution of the expression for $\rho
(r)$ (see problem \ref{11_14}) one obtains
+
(r)$ (see [[#11_14|problem]]) one obtains
 
\[
 
\[
v^2 (r) = 4\pi G\frac{1}{r}\int_0^r {r'^2 \rho \left( {r'}
+
v^2 (r) = 4\pi G\frac{1}{r}\int_0^r {r'^2 \rho \left( {r'}\right)dr'}  = 4\pi G\rho _0 \left( {r_c^2  + r_0^2 } \right)\left[
\right)dr'}  = 4\pi G\rho _0 \left( {r_c^2  + r_0^2 } \right)\left[
+
{1 - \left( \frac{r_c}{r} \right)arctg\left( \frac{r}{r_0 }
{1 - \left( {\frac{{r_c }}{r}} \right)arctg\left( {\frac{r}{{r_0 }}}
+
 
\right)} \right],
 
\right)} \right],
 
\]
 
\]
 
so it follows that
 
so it follows that
 
\[
 
\[
v_\infty ^2  = v^2 \left( {r \to \infty } \right) = 4\pi G\rho _0
+
v_\infty ^2  = v^2 \left( {r \to \infty } \right) = 4\pi G\rho _0\left( {r_c^2  + r_0^2 } \right)
\left( {r_c^2  + r_0^2 } \right)
+
 
\]
 
\]
 
and
 
and
 
\[
 
\[
\rho _0  = \frac{{v_\infty ^2 }}{{4\pi G\left( {r_c^2  + r_0^2 }
+
\rho _0  = \frac{v_\infty ^2}{4\pi G\left( {r_c^2  + r_0^2 }\right)}.
\right)}}.
+
 
\]
 
\]
 
From the other hand the core radius $r_c $ can be determined from the relation
 
From the other hand the core radius $r_c $ can be determined from the relation
 
\[
 
\[
\left( {\frac{{r_c }}{{r_0 }}} \right)arctg\left( {\frac{{r_0
+
\left( \frac{r_c}{r_0} \right)arctg\left( \frac{r_0}{r_c} \right) = 1 - \frac{v^2 \left( {r_0 }\right)}{v_\infty ^2}.
}}{{r_c }}} \right) = 1 - \frac{{v^2 \left( {r_0 }
+
\right)}}{{v_\infty ^2 }}.
+
 
\]
 
\]
 
Thus the local density and the core radius can be determined as soon as the rotation velocities $v\left( {r_0 }
 
Thus the local density and the core radius can be determined as soon as the rotation velocities $v\left( {r_0 }
Line 93: Line 88:
 
<div id="11_17"></div>
 
<div id="11_17"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 4 ===
 
=== Problem 4 ===
For the halo model considered in problem \ref{halo_model} obtain the dependencies $\rho(r)$ and $v(r)$ in terms of $\rho_0$ and $v_\infty$. Plot the dependencies $\rho(r)$ and $v(r)$.
+
For the halo model considered in [[#halo_model|problem]] about halo model obtain the dependencies $\rho(r)$ and $v(r)$ in terms of $\rho_0$ and $v_\infty$. Plot the dependencies $\rho(r)$ and $v(r)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">\[\rho \left( r \right) = \frac{{v_\infty ^2 }}{{4\pi G}}
+
     <p style="text-align: left;">\[\rho \left( r \right) = \frac{v_\infty ^2}{4\pi G}\frac{1}{r_c^2  + r^2} ;\quad v(r) = v_\infty   \sqrt{ 1 - \frac{r_c }{r} \arctan{\frac{r}{r_c}}} \]
{\frac{1}{{r_c^2  + r^2 }}} ;\quad v(r) = v_\infty \sqrt{ {1 -
+
{\frac{{r_c }}{r}} \arctg {\frac{r}{{r_c }}}
+
} } \]
+
  
 
For $v_\infty  = 220\mbox{km/s},\;r_c  = 2.6\mbox{kpc},\,r_0 = 8\mbox{kpc}$
 
For $v_\infty  = 220\mbox{km/s},\;r_c  = 2.6\mbox{kpc},\,r_0 = 8\mbox{kpc}$
Line 117: Line 110:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 5 ===
 
=== Problem 5 ===
 
Many clusters are sources of X-ray radiation. It is emitted by the hot intergalactic gas filling the cluster volume. Assuming that the hot gas ($kT\approx10keV$) is in equilibrium in the cluster with linear size $R=2.5Mpc$ and core radius $r_c=0.25Mpc$, estimate the mass of the cluster.
 
Many clusters are sources of X-ray radiation. It is emitted by the hot intergalactic gas filling the cluster volume. Assuming that the hot gas ($kT\approx10keV$) is in equilibrium in the cluster with linear size $R=2.5Mpc$ and core radius $r_c=0.25Mpc$, estimate the mass of the cluster.
Line 134: Line 128:
 
M(r)=-\frac{rkT}{Gm_p}\frac{d\ln\rho}{d\ln r}.
 
M(r)=-\frac{rkT}{Gm_p}\frac{d\ln\rho}{d\ln r}.
 
$$
 
$$
Using results of the problem \ref{DM16}
+
Using results of the [[#DM16|problem]]
 
$$
 
$$
\rho(r)  = \frac{{v_\infty ^2 }}{{4\pi G\left( {r_c^2  + r }
+
\rho(r)  = \frac{v_\infty ^2}{4\pi G\left( {r_c^2  + r }\right)},
\right)}},
+
 
$$
 
$$
 
one obtains
 
one obtains

Latest revision as of 10:13, 4 October 2012




Problem 1

Estimate the local density of the dark halo in the vicinity of the Earth, assuming that its density decreases as $\rho_g=C/r^2$.


Problem 2

Build the model of the spherically symmetric dark halo density corresponding to the observed galactic rotation curves.


Problem 3

In frames of the halo model considered in the previous problem determine the local dark matter density $\rho_0$ basing on the given rotation velocities of satellite galaxies at the outer border of the halo $v_\infty\equiv v(r\rightarrow\infty)$ and in some point $r_0$.


Problem 4

For the halo model considered in problem about halo model obtain the dependencies $\rho(r)$ and $v(r)$ in terms of $\rho_0$ and $v_\infty$. Plot the dependencies $\rho(r)$ and $v(r)$.


Problem 5

Many clusters are sources of X-ray radiation. It is emitted by the hot intergalactic gas filling the cluster volume. Assuming that the hot gas ($kT\approx10keV$) is in equilibrium in the cluster with linear size $R=2.5Mpc$ and core radius $r_c=0.25Mpc$, estimate the mass of the cluster.