Difference between revisions of "Dynamical Forms of Dark Energy"

From Universe in Problems
Jump to: navigation, search
(Problem 61)
 
(25 intermediate revisions by the same user not shown)
Line 8: Line 8:
  
  
''The cosmological constant represents nothing but the simplest realization of the dark energy - the hypothetical substance introduced to explain the accelerated expansion of the Universe. There is a dynamical alternative to the cosmological constant - the scalar fields, formed in the post-inflation epoch. The most popular version is the scalar field $\varphi$ evolving in a properly designed potential $V(\varphi)$. Numerous models of such type differ by choice of the scalar field Lagrangian. The simplest model is the so-called quintessence. In antique and medieval philosophy this term (literally "the fifth essence", after the earth, water, air and fire) meant the concentrated extract, the creative force, penetrating all the material world. We shall understand the quintessence as the scalar field in a potential, minimally coupled to gravity, i.e. feeling only the influence of space-time curvature. Besides that we restrict ourselves to the canonic form of the kinetic energy. The action for fields of such type takes the form
+
''The cosmological constant represents nothing but the simplest realization of the dark energy - the hypothetical substance introduced to explain the accelerated expansion of the Universe. There is a dynamical alternative to the cosmological constant - the scalar fields, formed in the post-inflation epoch. The most popular version is the scalar field $\varphi$ evolving in a properly designed potential $V(\varphi)$. Numerous models of such type differ by choice of the scalar field Lagrangian. The simplest model is the so-called quintessence. In antique and medieval philosophy this term (literally "the fifth essence", after the earth, water, air and fire) meant the concentrated extract, the creative force, penetrating all the material world. We shall understand the quintessence as the scalar field in a potential, minimally coupled to gravity, i.e. feeling only the influence of space-time curvature. Besides that we restrict ourselves to the canonic form of the kinetic energy. The action for fields of such type takes the form''
 
\[S=\int d^4x \sqrt{-g}\; L=\int d^4x \sqrt{-g}\left[\frac12g^{\mu\nu}\frac{\partial\varphi}{\partial x^\mu} \frac{\partial\varphi}{\partial x^\nu}-V(\varphi)\right].\]
 
\[S=\int d^4x \sqrt{-g}\; L=\int d^4x \sqrt{-g}\left[\frac12g^{\mu\nu}\frac{\partial\varphi}{\partial x^\mu} \frac{\partial\varphi}{\partial x^\nu}-V(\varphi)\right].\]
The equations of motion for the scalar field are obtained as usual, by variation of the action with respect to the field (see Chapter "Inflation").''
+
''The equations of motion for the scalar field are obtained as usual, by variation of the action with respect to the field (see Chapter "Inflation").''
  
  
Line 31: Line 31:
 
<div id="DE35"></div>
 
<div id="DE35"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 2 ===
 
Obtain the general solution of the Friedman equations for the Universe filled with free scalar field, $V(\varphi)=0$.
 
Obtain the general solution of the Friedman equations for the Universe filled with free scalar field, $V(\varphi)=0$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 43: Line 43:
 
\[\frac{d\ln(\dot\varphi a^3)}{dt}=0.\]
 
\[\frac{d\ln(\dot\varphi a^3)}{dt}=0.\]
 
Consequently,
 
Consequently,
\[\dot\varphi=c_0a^{-3}.\]
+
\[\dot\varphi=c_0a^{-3}.\]
The initial set of equations then reduces to two
+
The initial set of equations then reduces to two
 
\begin{align*}
 
\begin{align*}
 
\dot H & =\frac{k}{a^2}-\frac{c_0^2}{a^6},\\
 
\dot H & =\frac{k}{a^2}-\frac{c_0^2}{a^6},\\
Line 50: Line 50:
 
\end{align*}
 
\end{align*}
 
Equating $\dot H/\dot a=dH/da$, one obtains from the first equation (the second Friedman equation)
 
Equating $\dot H/\dot a=dH/da$, one obtains from the first equation (the second Friedman equation)
\[\frac{\dot H}{\dot a}=\frac{dH}{da}=\left(\frac{k}{a^2}-\frac{c_0^2}{a^6}\right)\frac{1}{Ha}.\]
+
\[\frac{\dot H}{\dot a}=\frac{dH}{da}=\left(\frac{k}{a^2}-\frac{c_0^2}{a^6}\right)\frac{1}{Ha}.\]
 
Integration gives
 
Integration gives
 
\begin{equation}\label{Hpm}
 
\begin{equation}\label{Hpm}
Line 56: Line 56:
 
\end{equation}
 
\end{equation}
 
which can be further integrated to yield
 
which can be further integrated to yield
\[t=\pm\int\frac{da}{\sqrt{c_1 a^{-4}+c_2 a^2 - k}}.\]
+
\[t=\pm\int\frac{da}{\sqrt{c_1 a^{-4}+c_2 a^2 - k}}.\]
 
Here $c_2$ is a new arbitrary constant. The $\pm$ signs reflect time reversal invariance of the original equations. Choosing the positive sign one obtains
 
Here $c_2$ is a new arbitrary constant. The $\pm$ signs reflect time reversal invariance of the original equations. Choosing the positive sign one obtains
\[a(t)\underset{t\to\infty}{\sim} a_0 \exp(\sqrt{c_2}t).\]
+
\[a(t)\underset{t\to\infty}{\sim} a_0 \exp(\sqrt{c_2}t).\]
 
Here $c_2$ is effective cosmological constant. For $c_2\ne0$ this solution contradicts the one obtained in the previous Chapter: $w_{DE}\to-1$ for $\dot\varphi^2\gg V(\varphi)$, and we consider the free scalar field with $\dot\varphi^2\gg V(\varphi)$. The contradiction can be eliminated if one takes into account (\ref{Hpm}), according to which
 
Here $c_2$ is effective cosmological constant. For $c_2\ne0$ this solution contradicts the one obtained in the previous Chapter: $w_{DE}\to-1$ for $\dot\varphi^2\gg V(\varphi)$, and we consider the free scalar field with $\dot\varphi^2\gg V(\varphi)$. The contradiction can be eliminated if one takes into account (\ref{Hpm}), according to which
 
\[\frac{\dot a}{a}=\pm\sqrt{c_1 a^{-6}-ka^{-2}}\]
 
\[\frac{\dot a}{a}=\pm\sqrt{c_1 a^{-6}-ka^{-2}}\]
Line 79: Line 79:
 
<div id="DE47_1"></div>
 
<div id="DE47_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 3 ===
 
Show that in the case of Universe filled with non-relativistic matter and quintessence the following relation holds: \[\dot H=-4\pi G(\rho_m+\dot\varphi^2).\]
 
Show that in the case of Universe filled with non-relativistic matter and quintessence the following relation holds: \[\dot H=-4\pi G(\rho_m+\dot\varphi^2).\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 92: Line 92:
 
<div id="DE47_2"></div>
 
<div id="DE47_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 4 ===
 
Show that in the case of Universe filled with non-relativistic matter and quintessence the Friedman equations
 
Show that in the case of Universe filled with non-relativistic matter and quintessence the Friedman equations
    \[H^2=\frac{8\pi G}{3}\left[\rho_m+\frac12\dot\varphi^2+V(\varphi)\right],\]
+
\[H^2=\frac{8\pi G}{3}\left[\rho_m+\frac12\dot\varphi^2+V(\varphi)\right],\]
 
\[\dot H =-4\pi G(\rho_m+\dot\varphi^2)\]
 
\[\dot H =-4\pi G(\rho_m+\dot\varphi^2)\]
 
can be transformed to the form
 
can be transformed to the form
Line 125: Line 125:
 
<div id="DE36"></div>
 
<div id="DE36"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 5 ===
 
Show that the conservation equation for quintessence can be obtained from the Klein-Gordon equation \[\ddot\varphi+3H\dot\varphi+\frac{dV}{d\varphi}=0.\]
 
Show that the conservation equation for quintessence can be obtained from the Klein-Gordon equation \[\ddot\varphi+3H\dot\varphi+\frac{dV}{d\varphi}=0.\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 145: Line 145:
 
<div id="DE36_2"></div>
 
<div id="DE36_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 6 ===
 
Find the explicit form of Lagrangian describing the dynamics of the Universe filled with the scalar field in potential $V(\varphi)$. Use it to obtain the equations of motion for the scale factor and the scalar field.
 
Find the explicit form of Lagrangian describing the dynamics of the Universe filled with the scalar field in potential $V(\varphi)$. Use it to obtain the equations of motion for the scale factor and the scalar field.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 163: Line 163:
 
<div id="DE36_3"></div>
 
<div id="DE36_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 7 ===
 
In the flat Universe filled with scalar field $\varphi$ obtain the isolated equation for $\varphi$ only. (See S.Downes, B.Dutta, K.Sinha, [http://arxiv.org/abs/1203.6892 arXiv:1203.6892])
 
In the flat Universe filled with scalar field $\varphi$ obtain the isolated equation for $\varphi$ only. (See S.Downes, B.Dutta, K.Sinha, [http://arxiv.org/abs/1203.6892 arXiv:1203.6892])
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 193: Line 193:
 
<div id="DE37"></div>
 
<div id="DE37"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 8 ===
 
What is the reason for the requirement that the scalar field's evolution in the quintessence model is slow enough?
 
What is the reason for the requirement that the scalar field's evolution in the quintessence model is slow enough?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 211: Line 211:
 
<div id="DE38"></div>
 
<div id="DE38"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 9 ===
 
Find the potential and kinetic energies for quintessence with the given state parameter $w$.
 
Find the potential and kinetic energies for quintessence with the given state parameter $w$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 224: Line 224:
 
<div id="DE39"></div>
 
<div id="DE39"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 10 ===
 
Find the dependence of state equation parameter $w$ for scalar field on the quantity \[x=\frac{\dot\varphi^2}{2V(\varphi)}\] and determine the ranges of $x$ corresponding to inflation in the slow-roll regime, matter-dominated epoch and the rigid state equation ($p\sim\rho$) limit correspondingly.
 
Find the dependence of state equation parameter $w$ for scalar field on the quantity \[x=\frac{\dot\varphi^2}{2V(\varphi)}\] and determine the ranges of $x$ corresponding to inflation in the slow-roll regime, matter-dominated epoch and the rigid state equation ($p\sim\rho$) limit correspondingly.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 237: Line 237:
 
<div id="DE40"></div>
 
<div id="DE40"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 11 ===
 
Show that if kinetic energy $K=\dot\varphi^2/2$ of a scalar field is initially much greater than its potential energy $V(\varphi)$, then it will decrease as $a^{-6}$.
 
Show that if kinetic energy $K=\dot\varphi^2/2$ of a scalar field is initially much greater than its potential energy $V(\varphi)$, then it will decrease as $a^{-6}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 250: Line 250:
 
<div id="DE41"></div>
 
<div id="DE41"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 12 ===
 
Show that the energy density of a scalar field $\varphi$ behaves as $\rho_\varphi\propto
 
Show that the energy density of a scalar field $\varphi$ behaves as $\rho_\varphi\propto
 
a^{-n}$, $0\le n\le6$.
 
a^{-n}$, $0\le n\le6$.
Line 270: Line 270:
 
<div id="DE42"></div>
 
<div id="DE42"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 13 ===
 
Show that dark energy density with the state equation $p=w(a)\rho(a)$ can be presented as a function of scale factor in the form
 
Show that dark energy density with the state equation $p=w(a)\rho(a)$ can be presented as a function of scale factor in the form
 
\[\rho=\rho_0 a^{-3[1+\bar w(a)]},\]
 
\[\rho=\rho_0 a^{-3[1+\bar w(a)]},\]
Line 294: Line 294:
 
<div id="DE55_1"></div>
 
<div id="DE55_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 14 ===
 
Consider the case of Universe filled with non-relativistic matter and quintessence with the state equation $p=w\rho$ and show that the first Friedman equation can be presented in the form
 
Consider the case of Universe filled with non-relativistic matter and quintessence with the state equation $p=w\rho$ and show that the first Friedman equation can be presented in the form
 
\[H^2(z)=H_0^2\left[\Omega_{m0}(1+z)^3+(1-\Omega_{m0})e^{3\int_0^z\frac{dz'}{1+z'}(1+w(z'))}\right].\]
 
\[H^2(z)=H_0^2\left[\Omega_{m0}(1+z)^3+(1-\Omega_{m0})e^{3\int_0^z\frac{dz'}{1+z'}(1+w(z'))}\right].\]
Line 308: Line 308:
 
<div id="DE55_2"></div>
 
<div id="DE55_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 15 ===
 
Show that for the model of the Universe considered in the previous problem the state equation parameter $w(z)$ can be presented in the form \[w(z)=\frac{\frac23(1+z)\frac{d\ln H}{dz}-1}{1-\frac{H_0^2}{H^2}\Omega_{m0}(1+z)^3}.\]
 
Show that for the model of the Universe considered in the previous problem the state equation parameter $w(z)$ can be presented in the form \[w(z)=\frac{\frac23(1+z)\frac{d\ln H}{dz}-1}{1-\frac{H_0^2}{H^2}\Omega_{m0}(1+z)^3}.\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 325: Line 325:
 
<div id="DE55_3"></div>
 
<div id="DE55_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 16 ===
 
Show that the result of the previous problem can be presented in the form
 
Show that the result of the previous problem can be presented in the form
 
\[w(z)=-1+(1+z)\frac{2/3E(z)E'(z)-\Omega_{m0}(1+z)^2}{E^2(z)-\Omega_{m0}(1+z)^3},\quad E(z)\equiv\frac{H(z)}{H_0}.\]
 
\[w(z)=-1+(1+z)\frac{2/3E(z)E'(z)-\Omega_{m0}(1+z)^2}{E^2(z)-\Omega_{m0}(1+z)^3},\quad E(z)\equiv\frac{H(z)}{H_0}.\]
Line 343: Line 343:
 
<div id="DE43"></div>
 
<div id="DE43"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 17 ===
 
Show that decreasing of the scalar field's energy density with increasing of the scale factor slows down as the scalar field's potential energy $V(\varphi)$ starts to dominate over the kinetic energy density $\dot\varphi^2/2$.
 
Show that decreasing of the scalar field's energy density with increasing of the scale factor slows down as the scalar field's potential energy $V(\varphi)$ starts to dominate over the kinetic energy density $\dot\varphi^2/2$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 360: Line 360:
 
<div id="DE44"></div>
 
<div id="DE44"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 18 ===
 
Express the time derivative $\dot\varphi$ through the quintessence' density $\rho_\varphi$ and the state equation parameter $w_\varphi$.
 
Express the time derivative $\dot\varphi$ through the quintessence' density $\rho_\varphi$ and the state equation parameter $w_\varphi$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 382: Line 382:
 
<div id="DE45"></div>
 
<div id="DE45"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 19 ===
 
Estimate the magnitude of the scalar field variation $\Delta\varphi$ during time $\Delta t$.
 
Estimate the magnitude of the scalar field variation $\Delta\varphi$ during time $\Delta t$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 404: Line 404:
 
<div id="DE46"></div>
 
<div id="DE46"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 20 ===
 
Show that in the radiation-dominated or matter-dominated epoch the variation of the scalar field is small, and the measure of its smallness is given by the relative density of the scalar field.
 
Show that in the radiation-dominated or matter-dominated epoch the variation of the scalar field is small, and the measure of its smallness is given by the relative density of the scalar field.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 423: Line 423:
 
<div id="DE47"></div>
 
<div id="DE47"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 21 ===
 
Show that in the quintessence $(w>-1)$ dominated Universe the condition $\dot{H}<0$ always holds.
 
Show that in the quintessence $(w>-1)$ dominated Universe the condition $\dot{H}<0$ always holds.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 437: Line 437:
 
<div id="DE48"></div>
 
<div id="DE48"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 22 ===
 
Consider simple bouncing solution of Friedman equations that avoid singularity. This solution requires positive spatial curvature $k=+1$, negative cosmological constant $\Lambda<0$ and a "matter" source with equation of state $p=w\rho$ with $w$ in the range \[-1<w<-\frac13.\]
 
Consider simple bouncing solution of Friedman equations that avoid singularity. This solution requires positive spatial curvature $k=+1$, negative cosmological constant $\Lambda<0$ and a "matter" source with equation of state $p=w\rho$ with $w$ in the range \[-1<w<-\frac13.\]
 
In the special case $w=-2/3$ Friedman equations describe a constrained harmonic oscillator (a simple harmonic Universe). Find the corresponding solutions.<br/>
 
In the special case $w=-2/3$ Friedman equations describe a constrained harmonic oscillator (a simple harmonic Universe). Find the corresponding solutions.<br/>
Line 462: Line 462:
 
<div id="DE49"></div>
 
<div id="DE49"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 23 ===
Derive the equation for the simple harmonic Universe (see previous problem), using the results of problem [#DE04].  
+
Derive the equation for the simple harmonic Universe (see previous problem), using the results of problem [[#DE04]].  
 
<!--<div class="NavFrame collapsed">
 
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 475: Line 475:
 
<div id="DE50"></div>
 
<div id="DE50"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
 
 +
=== Problem 24 ===
 
Barotropic liquid is a substance for which pressure is a single--valued function of density. Is quintessence generally barotropic?
 
Barotropic liquid is a substance for which pressure is a single--valued function of density. Is quintessence generally barotropic?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 488: Line 489:
 
<div id="DE51"></div>
 
<div id="DE51"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 25 ===
 
Show that a scalar field oscillating near the minimum of potential is not a barotropic substance.
 
Show that a scalar field oscillating near the minimum of potential is not a barotropic substance.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 502: Line 503:
 
<div id="DE52"></div>
 
<div id="DE52"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 26 ===
 
For a scalar field $\varphi$ with state equation $p=w\rho$ and relative energy density $\Omega_\varphi$ calculate the derivative \[w'=\frac{dw}{d\ln a}.\]
 
For a scalar field $\varphi$ with state equation $p=w\rho$ and relative energy density $\Omega_\varphi$ calculate the derivative \[w'=\frac{dw}{d\ln a}.\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 537: Line 538:
 
<div id="DE53"></div>
 
<div id="DE53"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 27 ===
 
Calculate the sound speed in the quintessence field $\varphi(t)$ with potential $V(\varphi)$.
 
Calculate the sound speed in the quintessence field $\varphi(t)$ with potential $V(\varphi)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 555: Line 556:
 
<div id="DE54"></div>
 
<div id="DE54"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 28 ===
 
Find the dependence of quintessence energy density on redshift for the state equation $p_{DE}=w(z)\rho_{DE}$.
 
Find the dependence of quintessence energy density on redshift for the state equation $p_{DE}=w(z)\rho_{DE}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 568: Line 569:
 
<div id="DE55"></div>
 
<div id="DE55"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 29 ===
 
The equation of state $p=w(a)\rho$ for quintessence is often parameterized as $w(a)=w_0 + w_1(1-a)$. Show that in this parametrization energy density and pressure of the
 
The equation of state $p=w(a)\rho$ for quintessence is often parameterized as $w(a)=w_0 + w_1(1-a)$. Show that in this parametrization energy density and pressure of the
 
scalar field take the form:
 
scalar field take the form:
Line 591: Line 592:
 
<div id="DE56"></div>
 
<div id="DE56"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 30 ===
 
Find the dependence of Hubble parameter on redshift in a flat Universe filled with non-relativistic matter with current relative density $\Omega_{m0}$ and dark energy with the state equation $p_{DE}=w(z)\rho_{DE}$.
 
Find the dependence of Hubble parameter on redshift in a flat Universe filled with non-relativistic matter with current relative density $\Omega_{m0}$ and dark energy with the state equation $p_{DE}=w(z)\rho_{DE}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 607: Line 608:
 
<div id="DE57"></div>
 
<div id="DE57"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 31 ===
 
Show that  in a flat Universe filled with non--relativistic matter and arbitrary component with the state equation $p=w(z)\rho$ the first Friedman equation can be presented in the form:
 
Show that  in a flat Universe filled with non--relativistic matter and arbitrary component with the state equation $p=w(z)\rho$ the first Friedman equation can be presented in the form:
 
\[w(z)=-1+\frac13\frac{d\ln(\delta H^2/H_0^2)}{d\ln(1+z)},\]
 
\[w(z)=-1+\frac13\frac{d\ln(\delta H^2/H_0^2)}{d\ln(1+z)},\]
Line 629: Line 630:
 
<div id="DE58"></div>
 
<div id="DE58"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 32 ===
 
Express the time derivative of a scalar field through its derivative with respect to redshift $d\varphi/dz.$
 
Express the time derivative of a scalar field through its derivative with respect to redshift $d\varphi/dz.$
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 645: Line 646:
 
<div id="DE59"></div>
 
<div id="DE59"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 33 ===
 
Show that the particle horizon does not exist for the case of quintessence because the corresponding integral diverges (see Chapter 2(3)).
 
Show that the particle horizon does not exist for the case of quintessence because the corresponding integral diverges (see Chapter 2(3)).
 
<!--<div class="NavFrame collapsed">
 
<!--<div class="NavFrame collapsed">
Line 658: Line 659:
 
<div id="DE60"></div>
 
<div id="DE60"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 34 ===
 
Show that in a Universe filled with quintessence the number of observed galaxies decreases with time.
 
Show that in a Universe filled with quintessence the number of observed galaxies decreases with time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 671: Line 672:
 
<div id="DE61"></div>
 
<div id="DE61"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 35 ===
 
Let $t$ be some time in the distant past $t\ll t_0$. Show that in a Universe dominated by a substance with state parameter $w>-1$ the current cosmic horizon (see Chapter 3) is
 
Let $t$ be some time in the distant past $t\ll t_0$. Show that in a Universe dominated by a substance with state parameter $w>-1$ the current cosmic horizon (see Chapter 3) is
 
\[R_h(t_0)\approx\frac32(1+\langle w\rangle)t_0,\]
 
\[R_h(t_0)\approx\frac32(1+\langle w\rangle)t_0,\]
Line 692: Line 693:
 
<div id="DE62"></div>
 
<div id="DE62"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 36 ===
 
From WMAP$^*$ observations we infer that the age of the Universe  is  $t_0\approx13.7\cdot10^9$ years and cosmic horizon equals to $R_h(t_0)=H_0^{-1}\approx13.5\cdot10^9$ light-years. Show that these data imply existence of some substance with equation of state $w<-1/3$, - "dark energy". <br/>
 
From WMAP$^*$ observations we infer that the age of the Universe  is  $t_0\approx13.7\cdot10^9$ years and cosmic horizon equals to $R_h(t_0)=H_0^{-1}\approx13.5\cdot10^9$ light-years. Show that these data imply existence of some substance with equation of state $w<-1/3$, - "dark energy". <br/>
 
$^*$ Wilkinson Microwave Anisotropy Probe is a spacecraft which measures differences in the temperature of the Big Bang's remnant radiant heat - the cosmic microwave background radiation - across the full sky.
 
$^*$ Wilkinson Microwave Anisotropy Probe is a spacecraft which measures differences in the temperature of the Big Bang's remnant radiant heat - the cosmic microwave background radiation - across the full sky.
Line 708: Line 709:
 
<div id="DE63"></div>
 
<div id="DE63"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 37 ===
 
The age of the Universe today depends upon the equation-of-state of the dark energy. Show that the more negative parameter $w$ is, the older Universe is today.
 
The age of the Universe today depends upon the equation-of-state of the dark energy. Show that the more negative parameter $w$ is, the older Universe is today.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 725: Line 726:
 
<div id="DE64"></div>
 
<div id="DE64"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 38 ===
 
Consider a Universe filled with dark energy with state equation depending on the Hubble parameter and its derivatives,
 
Consider a Universe filled with dark energy with state equation depending on the Hubble parameter and its derivatives,
 
\[p=w\rho+g(H,\dot H, \ddot H,\ldots,;t).\]
 
\[p=w\rho+g(H,\dot H, \ddot H,\ldots,;t).\]
Line 748: Line 749:
 
<div id="DE65"></div>
 
<div id="DE65"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 39 ===
 
Show that taking function $g$ (see the previous problem) in the form
 
Show that taking function $g$ (see the previous problem) in the form
 
\[g(H,\dot H, \ddot H)=-\frac{2}{\kappa^2}\left(\ddot H +
 
\[g(H,\dot H, \ddot H)=-\frac{2}{\kappa^2}\left(\ddot H +
Line 765: Line 766:
 
H(t) = \frac{H_0 } {\omega _0^2 } + H_1 \sin (\omega _0 t + \delta _0 )
 
H(t) = \frac{H_0 } {\omega _0^2 } + H_1 \sin (\omega _0 t + \delta _0 )
 
$$
 
$$
where $H_1$ and $\delta _0 $ are integration constants. (see D.Saez-Gomez, [http://arxiv.org/abs/0804.4586 arXiv:0804.4586, hep-th).</p>
+
where $H_1$ and $\delta _0 $ are integration constants. (see D.Saez-Gomez, [http://arxiv.org/abs/0804.4586 arXiv:0804.4586, hep-th]).</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 773: Line 774:
 
<div id="DE66"></div>
 
<div id="DE66"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 40 ===
Find the time dependence of the Hubble parameter in the case of function $g$ (see problem \ref{g}) in the form \[g(H;t)= -\frac{2\dot f(t)}{\kappa^2f(t)}H,\ \kappa^2=8\pi G\] where $f(t)=-\ln(H_1+H_0\sin\omega_0t)$, $H_1>H_0$ is arbitrary function of time.
+
Find the time dependence of the Hubble parameter in the case of function $g$ (see problem [[#DE64]]) in the form \[g(H;t)= -\frac{2\dot f(t)}{\kappa^2f(t)}H,\ \kappa^2=8\pi G\] where $f(t)=-\ln(H_1+H_0\sin\omega_0t)$, $H_1>H_0$ is arbitrary function of time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 793: Line 794:
 
<div id="DE68"></div>
 
<div id="DE68"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
 
 +
=== Problem 41 ===
 
Show that in an open Universe the scalar field potential $V[\varphi(\eta)]$ depends monotonically on the conformal time $\eta$.
 
Show that in an open Universe the scalar field potential $V[\varphi(\eta)]$ depends monotonically on the conformal time $\eta$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 820: Line 822:
 
<div id="DE69"></div>
 
<div id="DE69"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 42 ===
 
Reconstruct the dependence of the scalar field potential $V(a)$ on the scale factor basing on given dependencies for the field's energy density $\rho_\varphi(a)$ and state equation parameter $w(a)$.
 
Reconstruct the dependence of the scalar field potential $V(a)$ on the scale factor basing on given dependencies for the field's energy density $\rho_\varphi(a)$ and state equation parameter $w(a)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 839: Line 841:
 
<div id="DE70"></div>
 
<div id="DE70"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 43 ===
 
Find the quintessence potential providing the power law growth of the scale factor $a\propto t^p$, where the accelerated expansion requires $p>1$.
 
Find the quintessence potential providing the power law growth of the scale factor $a\propto t^p$, where the accelerated expansion requires $p>1$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 862: Line 864:
 
<div id="DE70_1"></div>
 
<div id="DE70_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 44 ===
 
Let $a(t)$, $\rho(t)$, $p(t)$ be solutions of Friedman equations. Show that for the case $k=0$ the function $\psi_n\equiv a^n$ is the solution of "Schr\"odinger equation" $\ddot\psi_n=U_n\psi_n$ with potential [see A.V.Yurov, arXiv:0905.1393] \[U_n=n^2\rho-\frac{3n}{2}(\rho+p).\]
 
Let $a(t)$, $\rho(t)$, $p(t)$ be solutions of Friedman equations. Show that for the case $k=0$ the function $\psi_n\equiv a^n$ is the solution of "Schr\"odinger equation" $\ddot\psi_n=U_n\psi_n$ with potential [see A.V.Yurov, arXiv:0905.1393] \[U_n=n^2\rho-\frac{3n}{2}(\rho+p).\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 879: Line 881:
 
<div id="DE70_2"></div>
 
<div id="DE70_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 45 ===
 
Consider flat FLRW Universe filled with a scalar field $\varphi$. Show that in the case when $\varphi=\varphi(t)$, the Einstein equations with the cosmological term are reduced to the "Schrödinger equation" \[\ddot\psi=3(V+\Lambda)\psi\] with $\psi=a^3$. Derive the equation for $\varphi(t)$ (see A.V.Yurov, [http://arxiv.org/abs/astro-ph/0305019 arXiv:0305019]).
 
Consider flat FLRW Universe filled with a scalar field $\varphi$. Show that in the case when $\varphi=\varphi(t)$, the Einstein equations with the cosmological term are reduced to the "Schrödinger equation" \[\ddot\psi=3(V+\Lambda)\psi\] with $\psi=a^3$. Derive the equation for $\varphi(t)$ (see A.V.Yurov, [http://arxiv.org/abs/astro-ph/0305019 arXiv:0305019]).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 899: Line 901:
 
<div id="DE70_3"></div>
 
<div id="DE70_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 46 ===
 
Consider FLRW space-time filled with non-interacting matter and dark energy components. Assume the following forms for the equation of state parameters of matter and dark energy
 
Consider FLRW space-time filled with non-interacting matter and dark energy components. Assume the following forms for the equation of state parameters of matter and dark energy
 
\[w_m=\frac{1}{3(x^\alpha+1)},\quad w_{DE}=\frac{\bar{w}x^\alpha}{x^\alpha+1},\]
 
\[w_m=\frac{1}{3(x^\alpha+1)},\quad w_{DE}=\frac{\bar{w}x^\alpha}{x^\alpha+1},\]
where $x=a/a_*$ with $a_*$ being some reference value of $a$, $\alpha$ is some positive constant and $\bar{w}$ is a negative constant. Analyze the dynamics of the Universe in this model. [see S.Kumar,L.Xu, arXiv:1207.5582]
+
where $x=a/a_*$ with $a_*$ being some reference value of $a$, $\alpha$ is some positive constant and $\bar{w}$ is a negative constant. Analyze the dynamics of the Universe in this model. (see S.Kumar,L.Xu, [http://arxiv.org/abs/1207.5582 arXiv:1207.5582])
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 916: Line 918:
 
<br/>
 
<br/>
 
For $x\ll1$
 
For $x\ll1$
\[\rho_m\approx\frac{C_1}{x^4},\quad p_m=\frac13\rho_m,\quad \rho_{DE}\approx\frac{C_2}{x^3}.\]
+
\[\rho_m\approx\frac{C_1}{x^4},\quad p_m=\frac13\rho_m,\quad \rho_{DE}\approx\frac{C_2}{x^3}.\]
 
In this case matter (relativistic) dominates over dark energy, as expected.
 
In this case matter (relativistic) dominates over dark energy, as expected.
 
<br/>
 
<br/>
 
For $x\gg1$
 
For $x\gg1$
\[\rho_m\approx\frac{C_1}{x^3},\quad p_m=\frac{C_1}{3x^{(3+\alpha)}}\]
+
\[\rho_m\approx\frac{C_1}{x^3},\quad p_m=\frac{C_1}{3x^{(3+\alpha)}}\]
 
Matter density decreases exactly as in the cosmological dust model. Since $\alpha>0$, $\rho_m\gg p_m$ as in the (non-relativistic) matter dominated Universe. Furthermore, in this limit
 
Matter density decreases exactly as in the cosmological dust model. Since $\alpha>0$, $\rho_m\gg p_m$ as in the (non-relativistic) matter dominated Universe. Furthermore, in this limit
\[\rho_{DE}\gg\rho_m,\quad |p_{DE}|\gg p_m.\]
+
\[\rho_{DE}\gg\rho_m,\quad |p_{DE}|\gg p_m.\]
 
Thus the considered model describes evolution of the Universe from the early radiation-dominated phase to the present  dark energy-dominated phase.</p>
 
Thus the considered model describes evolution of the Universe from the early radiation-dominated phase to the present  dark energy-dominated phase.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
 
  
 
== Tracker Fields ==
 
== Tracker Fields ==
Line 933: Line 933:
  
  
''A special type of scalar fields - the so-called tracker fields - was discovered at the end of the nineties. The term reflects the fact that a wide range of initial values for the fields of such type rapidly converges to the common evolutionary track. The initial values of energy density for such fields may vary by many orders of magnitude without considerable effect on the long-time asymptote. The peculiar property of tracker solutions is the fact that the state equation parameter for such a field is determined by the dominant component of the cosmological background.
+
''A special type of scalar fields - the so-called tracker fields - was discovered at the end of the nineties. The term reflects the fact that a wide range of initial values for the fields of such type rapidly converges to the common evolutionary track. The initial values of energy density for such fields may vary by many orders of magnitude without considerable effect on the long-time asymptote. The peculiar property of tracker solutions is the fact that the state equation parameter for such a field is determined by the dominant component of the cosmological background.''
 
<br/>
 
<br/>
It should be stressed that, unlike the standard attractor, the tracker solution is not a fixed point (in the sense of a solution corresponding to the fixed point in a system of autonomous differential equations ): the ratio of the scalar field energy density to that of background component (matter or radiation) continuously changes as the quantity $\varphi$ descends along the potential. It is well desirable feature because we want the energy density $\varphi$ to exceed ultimately the background density and to transfer the Universe into the observed phase of the accelerated expansion.
+
''It should be stressed that, unlike the standard attractor, the tracker solution is not a fixed point (in the sense of a solution corresponding to the fixed point in a system of autonomous differential equations ): the ratio of the scalar field energy density to that of background component (matter or radiation) continuously changes as the quantity $\varphi$ descends along the potential. It is well desirable feature because we want the energy density $\varphi$ to exceed ultimately the background density and to transfer the Universe into the observed phase of the accelerated expansion.''
 
<br/>
 
<br/>
Below we consider a number of concrete realizations of the tracker fields.''
+
''Below we consider a number of concrete realizations of the tracker fields.''
  
  
Line 943: Line 943:
 
<div id="DE71"></div>
 
<div id="DE71"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 47 ===
 
Show that initial value of the tracker field should obey the condition $\varphi_0=M_{Pl}$.
 
Show that initial value of the tracker field should obey the condition $\varphi_0=M_{Pl}$.
 
<!--<div class="NavFrame collapsed">
 
<!--<div class="NavFrame collapsed">
Line 956: Line 956:
 
<div id="DE72"></div>
 
<div id="DE72"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 48 ===
 
Show that densities of kinetic and potential energy of the scalar field $\varphi$ in the potential of the form \[V(\varphi)=M^4\exp(-\alpha\varphi M),\quad M\equiv\frac{M_{PL}^2}{16\pi}\] are proportional to the density of the concomitant component (matter or radiation) and therefore it realizes the tracker solution.
 
Show that densities of kinetic and potential energy of the scalar field $\varphi$ in the potential of the form \[V(\varphi)=M^4\exp(-\alpha\varphi M),\quad M\equiv\frac{M_{PL}^2}{16\pi}\] are proportional to the density of the concomitant component (matter or radiation) and therefore it realizes the tracker solution.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 968: Line 968:
 
   A\frac{\alpha }{M} & = & 2  \\ \\
 
   A\frac{\alpha }{M} & = & 2  \\ \\
 
   A\frac{1 - w}{1 + w} & = & \alpha M^3
 
   A\frac{1 - w}{1 + w} & = & \alpha M^3
\end{array}} \right.,\quad A^2  = 2M^4 \frac{{1 + w}}{{1 - w}}.$$
+
\end{array}} \right.,\quad A^2  = 2M^4 \frac{1 + w}{1 - w}.$$
 
Then one finds
 
Then one finds
$$\rho  = \frac{{2M^4 }}{{1 - w}}t^{ - 2}, \quad p = \frac{{2M^4 w}}{{1 - w}}t^{ - 2}  $$
+
$$\rho  = \frac{2M^4 }{1 - w}t^{ - 2}, \quad p = \frac{2M^4 w}{1 - w}t^{ - 2}  $$
 
and therefore
 
and therefore
 
   $$w_\varphi  = w.$$</p>
 
   $$w_\varphi  = w.$$</p>
Line 980: Line 980:
 
<div id="DE73"></div>
 
<div id="DE73"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
 
 +
=== Problem 49 ===
 
Consider a scalar field potential \[V(\varphi)=\frac A n\varphi^{-n},\] where $A$ is a dimensional parameter and $n>2$. Show that the solution $\varphi(t)\propto t^{2/(n+2)}$ is a tracker field under condition $a(t)\propto t^m$, $m=1/2$ or $2/3$ (either radiation or non-relativistic matter dominates).
 
Consider a scalar field potential \[V(\varphi)=\frac A n\varphi^{-n},\] where $A$ is a dimensional parameter and $n>2$. Show that the solution $\varphi(t)\propto t^{2/(n+2)}$ is a tracker field under condition $a(t)\propto t^m$, $m=1/2$ or $2/3$ (either radiation or non-relativistic matter dominates).
 
<!--<div class="NavFrame collapsed">
 
<!--<div class="NavFrame collapsed">
Line 993: Line 994:
 
<div id="DE74"></div>
 
<div id="DE74"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 50 ===
 
Show that the scalar field energy density corresponding to the tracker solution in the potential \[V(\varphi)=\frac A n\varphi^{-n}\] (see the previous problem [[#DE73]]) decreases slower than the energy density of radiation or non-relativistic matter.
 
Show that the scalar field energy density corresponding to the tracker solution in the potential \[V(\varphi)=\frac A n\varphi^{-n}\] (see the previous problem [[#DE73]]) decreases slower than the energy density of radiation or non-relativistic matter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,000: Line 1,001:
 
     <p style="text-align: left;">\begin{align*}
 
     <p style="text-align: left;">\begin{align*}
 
V & \propto \varphi ^{ - n} ;\\ \varphi & \propto t^\alpha  = t^{\frac{2}{n + 2}} ;\\
 
V & \propto \varphi ^{ - n} ;\\ \varphi & \propto t^\alpha  = t^{\frac{2}{n + 2}} ;\\
\dot \varphi & \propto t^{\frac{2}{n + 2} - 1}  = t^{ - \left( {\frac{n}{{n + 2}}} \right)} ;\\
+
\dot \varphi & \propto t^{\frac{2}{n + 2} - 1}  = t^{ - \left( {\frac{n}{n + 2}} \right)} ;\\
 
\dot \varphi ^2 & \propto t^{ - \frac{2n}{n + 2}}  = \varphi ^{ - n};
 
\dot \varphi ^2 & \propto t^{ - \frac{2n}{n + 2}}  = \varphi ^{ - n};
 
\end{align*}
 
\end{align*}
Line 1,012: Line 1,013:
 
<div id="DE75"></div>
 
<div id="DE75"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
 
 +
=== Problem 51 ===
 
Find the equation of state parameter $w_\varphi\equiv p_\varphi/\rho_\varphi$ for the scalar field of problem [[#DE73]].
 
Find the equation of state parameter $w_\varphi\equiv p_\varphi/\rho_\varphi$ for the scalar field of problem [[#DE73]].
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,022: Line 1,024:
 
\[
 
\[
 
2(1 - \alpha ) = 3m(1 + w),\,
 
2(1 - \alpha ) = 3m(1 + w),\,
\alpha  = \frac{2}{{n + 2}},
+
\alpha  = \frac{2}{n + 2},
 
\]
 
\]
 
and \[
 
and \[
Line 1,030: Line 1,032:
 
\begin{align*}
 
\begin{align*}
 
m & = \frac{2}{3(1 + w)},\\
 
m & = \frac{2}{3(1 + w)},\\
w_\varphi & = w\frac{n}{{n + 2}} - \frac{2}{n + 2}.
+
w_\varphi & = w\frac{n}{n + 2} - \frac{2}{n + 2}.
 
\end{align*}</p>
 
\end{align*}</p>
 
   </div>
 
   </div>
Line 1,039: Line 1,041:
 
<div id="DE76"></div>
 
<div id="DE76"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
 
 +
=== Problem 52 ===
 
Use explicit form of the tracker field in the potential of problem [[#DE73]] to verify the value of $w_\varphi$ obtained in the previous problem.
 
Use explicit form of the tracker field in the potential of problem [[#DE73]] to verify the value of $w_\varphi$ obtained in the previous problem.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,050: Line 1,053:
 
\]
 
\]
 
Substitute the explicit expressions for corresponding quantities to obtain
 
Substitute the explicit expressions for corresponding quantities to obtain
$$w_\varphi  = \frac{{\frac{1}{2}\left( {\alpha Ct^{\alpha  - 1} } \right)^2  - A\frac{{C^{ - n} }}{n}t^{ - \frac{{2n}}{{n + 2}}} }}{{\frac{1}{2}\left( {\alpha Ct^{\alpha  - 1} } \right)^2  + A\frac{{C^{ - n} }}{n}t^{ - \frac{{2n}}{{n + 2}}} }} = \frac{{\frac{1}{2}\alpha ^2  - A\frac{{C^{ - (n + 2)} }}{n}}}{{\frac{1}{2}\alpha ^2  + A\frac{{C^{ - (n + 2)} }}{n}}}.$$
+
$$ w_\varphi  = \frac{\frac{1}{2}\left( {\alpha Ct^{\alpha  - 1} } \right)^2  - A\frac{{C^{ - n} }}{n}t^{ - \frac{2n}{n + 2}}}
 +
{\frac{1}{2}\left( {\alpha Ct^{\alpha  - 1} } \right)^2  + A\frac{{C^{ - n} }}{n}t^{ - \frac{2n}{n + 2}}} = \frac{\frac{1}{2}\alpha ^2  - A\frac{C^{ - (n + 2)} }{n}}{\frac{1}{2}\alpha ^2  + A\frac{C^{ - (n + 2)}}{n}}.
 +
$$
 
Then recall that \[
 
Then recall that \[
C = \left( {\frac{{A(1 + w)}}{{(1 + w)\alpha ^2  + \alpha (1 - w)}}} \right)^{1/n + 2}
+
C = \left( {\frac{A(1 + w)}{(1 + w)\alpha ^2  + \alpha (1 - w)}} \right)^{1/n + 2}
\] and  \[\alpha  = \frac{2}{{n + 2}}\]
+
\] and  \[\alpha  = \frac{2}{n + 2}\]
 
and rewrite it in the form
 
and rewrite it in the form
  $$AC^{ - (n + 2)}  = \frac{{2(4 - nw + n)}}{{(1 + w)(n + 2)^2 }},$$
+
  $$AC^{ - (n + 2)}  = \frac{2(4 - nw + n)}{(1 + w)(n + 2)^2},$$
 
to finally obtain
 
to finally obtain
 
  \[
 
  \[
w_\varphi  = w\frac{n}{{n + 2}} - \frac{2}{{n + 2}}.
+
w_\varphi  = w\frac{n}{n + 2} - \frac{2}{n + 2}.
 
\]</p>
 
\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
 
  
 
== The K-essence ==
 
== The K-essence ==
  
  
Let us introduce the quantity $$X\equiv \frac{1}{2}{{g}^{\mu \nu }}\frac{\partial \varphi }{\partial {{x}^{\mu }}\frac{\partial \varphi }{\partial {{x}^{\nu }}}$$ and consider action for the scalar field in the form
+
Let us introduce the quantity  
 +
$$X\equiv \frac{1}{2}{{g}^{\mu \nu }}\frac{\partial \varphi }{\partial {{x}^{\mu }}}\frac{\partial \varphi }{\partial {{x}^{\nu }}}$$  
 +
and consider action for the scalar field in the form
 
$$
 
$$
 
S=\int{{{d}^{4}}x\sqrt{-g}}\; L\left( \varphi ,X \right),
 
S=\int{{{d}^{4}}x\sqrt{-g}}\; L\left( \varphi ,X \right),
Line 1,088: Line 1,093:
 
<div id="DE77"></div>
 
<div id="DE77"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 53 ===
 
Find the density and pressure of the $k$-essence.
 
Find the density and pressure of the $k$-essence.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,105: Line 1,110:
 
<div id="DE78"></div>
 
<div id="DE78"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 54 ===
 
Construct the equation of state for the $k$-essence.
 
Construct the equation of state for the $k$-essence.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,118: Line 1,123:
 
<div id="DE79"></div>
 
<div id="DE79"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 55 ===
 
Find the sound speed in the $k$-essence.
 
Find the sound speed in the $k$-essence.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,133: Line 1,138:
 
<div id="DE80"></div>
 
<div id="DE80"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 56 ===
 
The sound speed $c_s$ in any medium must satisfy two fundamental requirements: first, the sound waves must be stable and second, its velocity value should be low enough to preserve the causality condition. Therefore \[0\le c_s^2\le1.\] Reformulate the latter condition in terms of scale factor dependence for the equation of state parameter $w(a)$ for the case of the $k$-essence.
 
The sound speed $c_s$ in any medium must satisfy two fundamental requirements: first, the sound waves must be stable and second, its velocity value should be low enough to preserve the causality condition. Therefore \[0\le c_s^2\le1.\] Reformulate the latter condition in terms of scale factor dependence for the equation of state parameter $w(a)$ for the case of the $k$-essence.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,160: Line 1,165:
 
<div id="DE81"></div>
 
<div id="DE81"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 57 ===
 
Find the state equation for the simplified $k$-essence model with Lagrangian $L=F(X)$ (the so-called pure kinetic $k$-essence).
 
Find the state equation for the simplified $k$-essence model with Lagrangian $L=F(X)$ (the so-called pure kinetic $k$-essence).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,177: Line 1,182:
 
<div id="DE82"></div>
 
<div id="DE82"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 58 ===
 
Find the equation of motion for the scalar field in the pure kinetic $k$-essence.
 
Find the equation of motion for the scalar field in the pure kinetic $k$-essence.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,197: Line 1,202:
 
<div id="DE83"></div>
 
<div id="DE83"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 59 ===
 
Show that the scalar field equation of motion for the pure kinetic $k$-essence model gives the tracker solution.
 
Show that the scalar field equation of motion for the pure kinetic $k$-essence model gives the tracker solution.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,216: Line 1,221:
  
  
''The full amount of available cosmological observational data shows that the state equation parameter $w$ for dark energy lies in a narrow range near the value $w=-1$. In the previous subsections we considered the region $-1\le w\le-1/3$. The lower bound $w=-1$ of the interval corresponds to the cosmological constant, and all the remainder can be covered by the scalar fields with canonic Lagrangians. Recall that the upper bound $w=-1/3$ appears due to the necessity to provide the observed accelerated expansion of Universe. What other values of parameter $w$ can be used? The question is very hard to answer for the energy component we know so little about. General Relativity restricts possible values of the energy - momentum tensor by the so-called "energy conditions" (see Chapter 2). One of the simplest among them is the so-called Null Dominant Energy Condition (NDEC) $\rho+p\ge0$. The physical motivation of the latter is to avoid the vacuum instability. Applied to the dynamics of Universe, the NDEC requires that density of any allowed energy component cannot grow with the expansion of the Universe. The cosmological constant with $\dot\rho_\Lambda=0$, $\rho_\Lambda=const$ represents the limiting case. Because of our ignorance concerning the nature of dark energy it is reasonable to question whether this mysterious substance can differ from the already known "good" sources of energy and if it can violate the NDEC. Taking into account that dark energy must have positive density (it is necessary to make the Universe flat) and negative pressure (to provide the accelerated expansion of Universe), the violation of the NDEC must lead to $w<-1$. Such substance is called the phantom energy. The phantom field $\varphi$ minimally coupled to gravity has the following action:
+
''The full amount of available cosmological observational data shows that the state equation parameter $w$ for dark energy lies in a narrow range near the value $w=-1$. In the previous subsections we considered the region $-1\le w\le-1/3$. The lower bound $w=-1$ of the interval corresponds to the cosmological constant, and all the remainder can be covered by the scalar fields with canonic Lagrangians. Recall that the upper bound $w=-1/3$ appears due to the necessity to provide the observed accelerated expansion of Universe. What other values of parameter $w$ can be used? The question is very hard to answer for the energy component we know so little about. General Relativity restricts possible values of the energy - momentum tensor by the so-called "energy conditions" (see Chapter 2). One of the simplest among them is the so-called Null Dominant Energy Condition (NDEC) $\rho+p\ge0$. The physical motivation of the latter is to avoid the vacuum instability. Applied to the dynamics of Universe, the NDEC requires that density of any allowed energy component cannot grow with the expansion of the Universe. The cosmological constant with $\dot\rho_\Lambda=0$, $\rho_\Lambda=const$ represents the limiting case. Because of our ignorance concerning the nature of dark energy it is reasonable to question whether this mysterious substance can differ from the already known "good" sources of energy and if it can violate the NDEC. Taking into account that dark energy must have positive density (it is necessary to make the Universe flat) and negative pressure (to provide the accelerated expansion of Universe), the violation of the NDEC must lead to $w<-1$. Such substance is called the phantom energy. The phantom field $\varphi$ minimally coupled to gravity has the following action:''
 
\[S=\int d^4x \sqrt{-g}L=-\int d^4x \sqrt{-g}\left[\frac12g^{\mu\nu}\frac{\partial\varphi}{\partial x_\mu} \frac{\partial\varphi}{\partial x_\nu}+V(\varphi)\right],\]
 
\[S=\int d^4x \sqrt{-g}L=-\int d^4x \sqrt{-g}\left[\frac12g^{\mu\nu}\frac{\partial\varphi}{\partial x_\mu} \frac{\partial\varphi}{\partial x_\nu}+V(\varphi)\right],\]
which differs from the canonic action for the scalar field only by the sign of the kinetic term.''
+
''which differs from the canonic action for the scalar field only by the sign of the kinetic term.''
  
  
Line 1,224: Line 1,229:
 
<div id="DE96"></div>
 
<div id="DE96"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 60 ===
 
Show that the action of a scalar field minimally coupled to gravitation
 
Show that the action of a scalar field minimally coupled to gravitation
 
\[S=\int d^4x\sqrt{-g}\left[\frac12(\nabla\varphi)^2-V(\varphi)\right]\]
 
\[S=\int d^4x\sqrt{-g}\left[\frac12(\nabla\varphi)^2-V(\varphi)\right]\]
Line 1,239: Line 1,244:
 
<div id="DE97"></div>
 
<div id="DE97"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 61 ===
 
Obtain the equation of motion for the phantom scalar field described by the action of the previous problem.
 
Obtain the equation of motion for the phantom scalar field described by the action of the previous problem.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">Proceeding like in problem \ref{inf5} of Chapter \ref{inf}, one obtains
+
     <p style="text-align: left;">Proceeding like in problem \ref{inf5} of Chapter Inflation, one obtains
 
$$
 
$$
 
\delta S = \int {d^4 x\sqrt { - g} } \left[ {  \left( {\nabla ^\mu  \nabla _\mu  \varphi } \right) - V_{,\varphi } (\varphi )} \right]\delta \varphi  - \int {d^4 x\sqrt { - g} } \nabla _\mu  \left( {\delta \varphi \nabla ^\mu  \varphi } \right)
 
\delta S = \int {d^4 x\sqrt { - g} } \left[ {  \left( {\nabla ^\mu  \nabla _\mu  \varphi } \right) - V_{,\varphi } (\varphi )} \right]\delta \varphi  - \int {d^4 x\sqrt { - g} } \nabla _\mu  \left( {\delta \varphi \nabla ^\mu  \varphi } \right)
Line 1,263: Line 1,268:
 
<div id="DE98"></div>
 
<div id="DE98"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
 
 +
=== Problem 62 ===
 
Find the energy density and pressure of the phantom field.
 
Find the energy density and pressure of the phantom field.
 
<!--<div class="NavFrame collapsed">
 
<!--<div class="NavFrame collapsed">
Line 1,276: Line 1,282:
 
<div id="DE99"></div>
 
<div id="DE99"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 63 ===
 
Show that the phantom energy density grows with time. Find the dependence $\rho(a)$ for $w=-4/3$.
 
Show that the phantom energy density grows with time. Find the dependence $\rho(a)$ for $w=-4/3$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,291: Line 1,297:
 
<div id="DE100_0"></div>
 
<div id="DE100_0"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 64 ===
 
Show that the phantom scalar field violates all four energety conditions.
 
Show that the phantom scalar field violates all four energety conditions.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,314: Line 1,320:
 
<div id="DE100"></div>
 
<div id="DE100"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 65 ===
 
Show that in the phantom scalar field $(w<-1)$ dominated Universe the condition $\dot{H}>0$ always holds.
 
Show that in the phantom scalar field $(w<-1)$ dominated Universe the condition $\dot{H}>0$ always holds.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,328: Line 1,334:
 
<div id="DE101"></div>
 
<div id="DE101"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 66 ===
 
As we have seen in Chapter 3, the Friedman equations, describing spatially flat Universe, possess the duality, which connects the expanding and contracting Universe by appropriate transformation of the state equation. Consider the Universe where the weak energetic condition $\rho\ge0,\ \rho+p\ge0$ holds and show that the ideal liquid associated with the dual Universe is a phantom liquid or the cosmological constant.
 
As we have seen in Chapter 3, the Friedman equations, describing spatially flat Universe, possess the duality, which connects the expanding and contracting Universe by appropriate transformation of the state equation. Consider the Universe where the weak energetic condition $\rho\ge0,\ \rho+p\ge0$ holds and show that the ideal liquid associated with the dual Universe is a phantom liquid or the cosmological constant.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,341: Line 1,347:
 
<div id="DE101_1"></div>
 
<div id="DE101_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 67 ===
 
Show that the Friedman equations for the Universe filled with dark energy in the form of cosmological constant and a substance with the state equation $p=w\rho$ can be presented in the form of nonlinear oscillator (see M.Dabrowski  [http://arxiv.org/abs/hep-th/0307128 arXiv:0307128] )
 
Show that the Friedman equations for the Universe filled with dark energy in the form of cosmological constant and a substance with the state equation $p=w\rho$ can be presented in the form of nonlinear oscillator (see M.Dabrowski  [http://arxiv.org/abs/hep-th/0307128 arXiv:0307128] )
 
\[\ddot X-\frac{D^2}{3}\Lambda X+D(D-1)kX^{1-2/D}=0\]
 
\[\ddot X-\frac{D^2}{3}\Lambda X+D(D-1)kX^{1-2/D}=0\]
 
where
 
where
 
\[X=a^{D(w)},\quad D(w)=\frac32(1+w).\]
 
\[X=a^{D(w)},\quad D(w)=\frac32(1+w).\]
<div class="NavFrame collapsed">
+
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
Line 1,357: Line 1,363:
 
<div id="DE102"></div>
 
<div id="DE102"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 68 ===
 
Show that the Universe dual to the one filled with a free scalar field, is described by the state equation $p=-3\rho$.  
 
Show that the Universe dual to the one filled with a free scalar field, is described by the state equation $p=-3\rho$.  
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,372: Line 1,378:
 
<div id="DE104"></div>
 
<div id="DE104"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 69 ===
 
Show that in the phantom component of dark energy the sound speed exceeds the light speed.
 
Show that in the phantom component of dark energy the sound speed exceeds the light speed.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,385: Line 1,391:
 
<div id="DE105"></div>
 
<div id="DE105"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 70 ===
 
Construct the phantom energy model with negative kinetic term in the potential satisfying the slow-roll conditions \[\frac 1 V \frac{dV}{d\varphi}\ll1\] and \[\frac 1 V \frac{d^2V}{d\varphi^2}\ll1.\]
 
Construct the phantom energy model with negative kinetic term in the potential satisfying the slow-roll conditions \[\frac 1 V \frac{dV}{d\varphi}\ll1\] and \[\frac 1 V \frac{d^2V}{d\varphi^2}\ll1.\]
 
<!--<div class="NavFrame collapsed">
 
<!--<div class="NavFrame collapsed">
Line 1,393: Line 1,399:
 
   </div>
 
   </div>
 
</div>--></div>
 
</div>--></div>
 
 
  
 
== Disintegration of Bound Structures ==
 
== Disintegration of Bound Structures ==
Line 1,408: Line 1,412:
 
<div id="DE108"></div>
 
<div id="DE108"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 71 ===
 
Show that for $w\ge-1$ a system gravitationally bound at some moment of time (Milky Way for example) remains bound forever.
 
Show that for $w\ge-1$ a system gravitationally bound at some moment of time (Milky Way for example) remains bound forever.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,421: Line 1,425:
 
<div id="DE109"></div>
 
<div id="DE109"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 72 ===
 
Show that in the phantom energy dominated Universe any gravitationally bound system will dissociate with time.
 
Show that in the phantom energy dominated Universe any gravitationally bound system will dissociate with time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,434: Line 1,438:
 
<div id="DE106"></div>
 
<div id="DE106"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 73 ===
 
Show that in a Universe filled with non-relativistic matter a hydrogen atom will remain a bound system forever.
 
Show that in a Universe filled with non-relativistic matter a hydrogen atom will remain a bound system forever.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,465: Line 1,469:
 
<div id="DE110"></div>
 
<div id="DE110"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 74 ===
 
Demonstrate, that any gravitationally bound system with mass $M$ and radius (linear scale) $R$, immersed in the phantom background $\left( {w <  - 1} \right)$ will decay in time
 
Demonstrate, that any gravitationally bound system with mass $M$ and radius (linear scale) $R$, immersed in the phantom background $\left( {w <  - 1} \right)$ will decay in time
 
\[t \simeq P\frac{|1+3w|}{|1+w|}\frac29\sqrt{\frac{3}{2\pi}}\]
 
\[t \simeq P\frac{|1+3w|}{|1+w|}\frac29\sqrt{\frac{3}{2\pi}}\]
Line 1,493: Line 1,497:
 
<div id="DE110_2"></div>
 
<div id="DE110_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 75 ===
 
Use the result of the previous problem to determine the time of disintegration for the following systems: galaxy clusters, Milky Way, Solar System, Earth, hydrogen atom. Consider the case $w=-3/2$.
 
Use the result of the previous problem to determine the time of disintegration for the following systems: galaxy clusters, Milky Way, Solar System, Earth, hydrogen atom. Consider the case $w=-3/2$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,504: Line 1,508:
 
{| cellpadding="5" cellspacing="0" border="1" align="center"
 
{| cellpadding="5" cellspacing="0" border="1" align="center"
 
|+ |
 
|+ |
! rowspan="2" | Time
 
!rowspan="2" |System disintegrated
 
 
 
|- align="center" |
 
|- align="center" |
|$t_{rip} - 2$~Gyr || Galaxy Clusters  
+
|Time  || System disintegrated
|$t_{rip} - 120$~Myr||Milky Way
+
|- align="center" |
|$t_{rip} - 6$~months||Solar System
+
|$t_{rip} - 2$ Gyr || Galaxy Clusters
|t_{rip} - 60$~minutes||Earth  
+
|- align="center" |
|$t_{rip} - 10^{-19}$~s||Atoms
+
|$t_{rip} - 120$ Myr||Milky Way
 +
|- align="center" |
 +
|$t_{rip} - 6$ months||Solar System
 +
|- align="center" |
 +
|$t_{rip} - 60$ minutes||Earth
 +
|- align="center" |
 +
|$t_{rip} - 10^{-19}$ s||Atoms
 
|}
 
|}
</div></p>
+
</div>
 +
</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,544: Line 1,552:
 
<div id="DE103"></div>
 
<div id="DE103"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 76 ===
 
For the flat Universe composed of matter $(\Omega_m\simeq0.3)$ and phantom energy $(w=-1.5)$ find the time interval left to the Big Rip.
 
For the flat Universe composed of matter $(\Omega_m\simeq0.3)$ and phantom energy $(w=-1.5)$ find the time interval left to the Big Rip.
 
<!--<div class="NavFrame collapsed">
 
<!--<div class="NavFrame collapsed">
Line 1,559: Line 1,567:
 
<div id="RIPS_1"></div>
 
<div id="RIPS_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 77 ===
 
Show that all little-rip models can be described by condition $\ddot f>0$ where $f(t)$ is a nonsingular function such that $a(t)=\exp[f(t)]$.
 
Show that all little-rip models can be described by condition $\ddot f>0$ where $f(t)$ is a nonsingular function such that $a(t)=\exp[f(t)]$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,575: Line 1,583:
 
<div id="RIPS_2"></div>
 
<div id="RIPS_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 78 ===
 
Consider the approach of the following authors (see S. Nojiri, S.D. Odintsov, and S. Tsujikawa, Phys. Rev. D 71, 063004 (2005); S. Nojiri and S.D. Odintsov, Phys. Rev. D 72, 023003 (2005);  H. Stefancic, Phys. Rev. D 71, 084024 (2005)), who expressed the pressure as a  function of  the density in the form
 
Consider the approach of the following authors (see S. Nojiri, S.D. Odintsov, and S. Tsujikawa, Phys. Rev. D 71, 063004 (2005); S. Nojiri and S.D. Odintsov, Phys. Rev. D 72, 023003 (2005);  H. Stefancic, Phys. Rev. D 71, 084024 (2005)), who expressed the pressure as a  function of  the density in the form
 
\[p=-\rho-f(\rho).\]
 
\[p=-\rho-f(\rho).\]
Line 1,590: Line 1,598:
 
<div id="RIPS_3"></div>
 
<div id="RIPS_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 79 ===
 
Find the dependencies $a(\rho)$ and $t(\rho)$ for the case of flat Universe filled by a substance with the following state equation \[p=-\rho-f(\rho).\]
 
Find the dependencies $a(\rho)$ and $t(\rho)$ for the case of flat Universe filled by a substance with the following state equation \[p=-\rho-f(\rho).\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,604: Line 1,612:
 
<div id="RIPS_4"></div>
 
<div id="RIPS_4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 80 ===
 
Solve the previous problem in the case of \(f(\rho)A\rho^\alpha,\ \alpha=const.\)
 
Solve the previous problem in the case of \(f(\rho)A\rho^\alpha,\ \alpha=const.\)
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,622: Line 1,630:
 
<div id="RIPS_5"></div>
 
<div id="RIPS_5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 81 ===
 
Find the condition for big-rip singularity in the case $p=-\rho-f(\rho).$
 
Find the condition for big-rip singularity in the case $p=-\rho-f(\rho).$
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,637: Line 1,645:
 
<div id="RIPS_6"></div>
 
<div id="RIPS_6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 82 ===
 
Show that taking a power law for $f(\rho)$, namely $f(\rho)=A\rho^\alpha$ a future singularity can be avoided for $\alpha\le1/2$.
 
Show that taking a power law for $f(\rho)$, namely $f(\rho)=A\rho^\alpha$ a future singularity can be avoided for $\alpha\le1/2$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,650: Line 1,658:
 
<div id="RIPS_7_1"></div>
 
<div id="RIPS_7_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 83 ===
Solve the previous problem using the condition for absence of future singularities obtained in Problem [#RIPS_1].
+
Solve the previous problem using the condition for absence of future singularities obtained in Problem [[#RIPS_1]].
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 1,673: Line 1,681:
 
<div id="RIPS_7_2"></div>
 
<div id="RIPS_7_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
 
 +
=== Problem 84 ===
 
Formulate the condition for the absence of a finite-time future (Big Rip) singularity in terms of function $\rho(a)$ .
 
Formulate the condition for the absence of a finite-time future (Big Rip) singularity in terms of function $\rho(a)$ .
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,694: Line 1,703:
 
<div id="RIPS_7_3"></div>
 
<div id="RIPS_7_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 85 ===
 
Consider the polytropic equation of state
 
Consider the polytropic equation of state
 
\[p=\alpha\rho+k\rho^{1+1/n}\equiv-\rho+\rho\left(1+\alpha+k\rho^{1/n}\right)\]
 
\[p=\alpha\rho+k\rho^{1+1/n}\equiv-\rho+\rho\left(1+\alpha+k\rho^{1/n}\right)\]
under assumption $-1<\alpha\le1$. The case $\alpha=-1$ is treated separately in Problem \ref{RIPS_7_4}. The additional assumption $1+\alpha+k\rho^{1/n}\le0$ (and necessary condition $k<0$) guarantees that the density increases with the scale factor. This corresponds to phantom Universe. Find explicit dependence $\rho(a)$ and analyze limits $a\to0$ and $a\to\infty$.
+
under assumption $-1<\alpha\le1$. The case $\alpha=-1$ is treated separately in Problem [[#RIPS_7_4]]. The additional assumption $1+\alpha+k\rho^{1/n}\le0$ (and necessary condition $k<0$) guarantees that the density increases with the scale factor. This corresponds to phantom Universe. Find explicit dependence $\rho(a)$ and analyze limits $a\to0$ and $a\to\infty$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 1,719: Line 1,728:
 
<div id="RIPS_7_4"></div>
 
<div id="RIPS_7_4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
 
Consider the previous problem with $\alpha=-1$ and $k<0$. This equation of state was introduced by Nojiri and Odintsov (see problem \ref{RIPS_7_3}). Chavanis re-derives their results in a more transparent form.
+
=== Problem 86 ===
 +
Consider the previous problem with $\alpha=-1$ and $k<0$. This equation of state was introduced by Nojiri and Odintsov (see problem [[#RIPS_7_3]]). Chavanis re-derives their results in a more transparent form.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 1,746: Line 1,756:
 
<div id="RIPS_8"></div>
 
<div id="RIPS_8"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
 
 +
=== Problem 87 ===
 
Show that for any bound system the rip always occurs when either $H$ diverges or $\dot H$ diverges (assuming $\dot H>0$ ( expansion of Universe is accelerating)).
 
Show that for any bound system the rip always occurs when either $H$ diverges or $\dot H$ diverges (assuming $\dot H>0$ ( expansion of Universe is accelerating)).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,761: Line 1,772:
 
<div id="RIPS_7"></div>
 
<div id="RIPS_7"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 88 ===
 
Solve the previous problem in terms of function $f(\rho)$.
 
Solve the previous problem in terms of function $f(\rho)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,778: Line 1,789:
 
<div id="RIPS_9"></div>
 
<div id="RIPS_9"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 89 ===
 
Perform analysis of possible singularities in terms of characteristics of the scalar field $\varphi$ with the potential $V(\varphi)$.
 
Perform analysis of possible singularities in terms of characteristics of the scalar field $\varphi$ with the potential $V(\varphi)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,799: Line 1,810:
 
<div id="RIPS_65"></div>
 
<div id="RIPS_65"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 90 ===
 
So-called soft singularities are characterized by a diverging $\ddot a$ whereas both the scale factor $a$ and $\dot a$ are finite. Analyze features of intersections between the soft singularities and geodesics.
 
So-called soft singularities are characterized by a diverging $\ddot a$ whereas both the scale factor $a$ and $\dot a$ are finite. Analyze features of intersections between the soft singularities and geodesics.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,817: Line 1,828:
 
<div id="RIPS_66"></div>
 
<div id="RIPS_66"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 91 ===
 
(see F.Cannata, A. Kamenshchik, D.Regoli, [http://arxiv.org/abs/0801.2348 arXiv:0801.2348]) The power law cosmological evolution $a(t)\propto t^\beta$ leads to the Hubble parameter $H(t)\propto 1/t$. Consider a "softer" version of the cosmological evolution given by the law
 
(see F.Cannata, A. Kamenshchik, D.Regoli, [http://arxiv.org/abs/0801.2348 arXiv:0801.2348]) The power law cosmological evolution $a(t)\propto t^\beta$ leads to the Hubble parameter $H(t)\propto 1/t$. Consider a "softer" version of the cosmological evolution given by the law
 
\[H(t)=\frac{S}{t^\alpha},\]
 
\[H(t)=\frac{S}{t^\alpha},\]
Line 1,837: Line 1,848:
 
<div id="RIPS_67"></div>
 
<div id="RIPS_67"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 92 ===
 
Reconstruct the potential of the scalar field model, producing the given cosmological evolution $H(t)$.
 
Reconstruct the potential of the scalar field model, producing the given cosmological evolution $H(t)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,866: Line 1,877:
 
<div id="RIPS_68"></div>
 
<div id="RIPS_68"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 93 ===
 
Reconstruct the potential of the scalar field model, producing the cosmological evolution
 
Reconstruct the potential of the scalar field model, producing the cosmological evolution
\begin{equation}H(t)=\frac{S}{t^\alpha},\label{RIPS_68}\end{equation}
+
\begin{equation}\label{RIPS_68}
 +
H(t)=\frac{S}{t^\alpha},
 +
\end{equation}
 
using the technique described in the previous problem.
 
using the technique described in the previous problem.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">begin{equation}\dot\varphi = \pm \sqrt{-\frac23\dot H}=\pm\sqrt{\frac23\alpha S}t^{-\frac{\alpha+1}{2}}.\label{RIPS_68_1}\end{equation}
+
     <p style="text-align: left;">\begin{equation}\dot\varphi = \pm \sqrt{-\frac23\dot H}=\pm\sqrt{\frac23\alpha S}t^{-\frac{\alpha+1}{2}}.\label{RIPS_68_1}\end{equation}
 
We shall choose the positive sign, without loosing generality. Integration gives
 
We shall choose the positive sign, without loosing generality. Integration gives
 
\begin{equation}\varphi(t) = \sqrt{\frac23\alpha S}\frac{2t^{-\frac{\alpha+1}{2}}}{1-\alpha}.\label{RIPS_68_2}\end{equation}
 
\begin{equation}\varphi(t) = \sqrt{\frac23\alpha S}\frac{2t^{-\frac{\alpha+1}{2}}}{1-\alpha}.\label{RIPS_68_2}\end{equation}
Line 1,883: Line 1,896:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
 
  
 
== The Statefinder ==
 
== The Statefinder ==
Line 1,897: Line 1,908:
 
<div id="DE111"></div>
 
<div id="DE111"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 94 ===
 
Explain the advantages for the description of the current Universe's dynamics brought by the  introduction of the statefinder.
 
Explain the advantages for the description of the current Universe's dynamics brought by the  introduction of the statefinder.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,910: Line 1,921:
 
<div id="DE112"></div>
 
<div id="DE112"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 95 ===
 
Express the statefinder $\{r,s\}$ in terms of the total density, pressure and their time derivatives for a spatially flat Universe.
 
Express the statefinder $\{r,s\}$ in terms of the total density, pressure and their time derivatives for a spatially flat Universe.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,925: Line 1,936:
 
<div id="DE113"></div>
 
<div id="DE113"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 96 ===
 
Show that for a flat Universe filled with a two-component liquid composed of non--relativistic matter (dark matter + baryons) and dark energy with relative density $\Omega _{DE}  = \rho _{DE} /\rho _{cr} $ the statefinder takes the form
 
Show that for a flat Universe filled with a two-component liquid composed of non--relativistic matter (dark matter + baryons) and dark energy with relative density $\Omega _{DE}  = \rho _{DE} /\rho _{cr} $ the statefinder takes the form
 
$$
 
$$
Line 1,954: Line 1,965:
 
<div id="DE114"></div>
 
<div id="DE114"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 97 ===
 
Express the statefinder in terms of Hubble parameter $H(z)$ and its derivatives.
 
Express the statefinder in terms of Hubble parameter $H(z)$ and its derivatives.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 1,971: Line 1,982:
 
<div id="DE115"></div>
 
<div id="DE115"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 98 ===
 
Find the statefinders<br/>
 
Find the statefinders<br/>
 
'''a)''' for dark energy in the form of cosmological constant;
 
'''a)''' for dark energy in the form of cosmological constant;
Line 1,993: Line 2,004:
 
<div id="DE116"></div>
 
<div id="DE116"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 99 ===
 
Express the photometric distance $d_L(z)$ through the current values of parameters $q$ and $s$.
 
Express the photometric distance $d_L(z)$ through the current values of parameters $q$ and $s$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 2,033: Line 2,044:
 
<div id="DE117"></div>
 
<div id="DE117"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 100 ===
 
Show that at the point of  transition between the quintessence and the phantom phases $\dot H$ vanishes.
 
Show that at the point of  transition between the quintessence and the phantom phases $\dot H$ vanishes.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 2,048: Line 2,059:
 
<div id="DE117_1"></div>
 
<div id="DE117_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 101 ===
 
Show that the sound speed of a single perfect barotropic fluid is diverges when $w$ crosses the phantom divide line.
 
Show that the sound speed of a single perfect barotropic fluid is diverges when $w$ crosses the phantom divide line.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 2,063: Line 2,074:
 
<div id="DE117_11"></div>
 
<div id="DE117_11"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 102 ===
 
Find a dynamical law for the equation of state parameter $w=p/\rho$ in the barotropic cosmic fluid (see N.Caplar, H.Stefancic, [http://arxiv.org/abs/1208.0449 arXiv:1208.0449]).
 
Find a dynamical law for the equation of state parameter $w=p/\rho$ in the barotropic cosmic fluid (see N.Caplar, H.Stefancic, [http://arxiv.org/abs/1208.0449 arXiv:1208.0449]).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 2,089: Line 2,100:
 
<div id="DE117_12"></div>
 
<div id="DE117_12"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 103 ===
 
Using the results of previous problem, find the functions $w(z)$, $\rho(z)$ and $p(z)$ for the simplest possibility $c_S=const$.
 
Using the results of previous problem, find the functions $w(z)$, $\rho(z)$ and $p(z)$ for the simplest possibility $c_S=const$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 2,113: Line 2,124:
 
<div id="DE117_13"></div>
 
<div id="DE117_13"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 104 ===
Realize the procedure described in the problem [#DE117_11] for the case of a minimally coupled scalar field $\varphi$ with potential $V(\varphi)$ in a spatially flat Universe.
+
Realize the procedure described in the problem [[#DE117_11]] for the case of a minimally coupled scalar field $\varphi$ with potential $V(\varphi)$ in a spatially flat Universe.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">The time derivative of the scalar field can be expressed as (see problem \ref{DE117_11})
+
     <p style="text-align: left;">The time derivative of the scalar field can be expressed as (see problem [[#DE117_11]])
 
\[\dot\varphi=\frac{d\varphi}{dw}\frac{dw}{dt}=-3H(c_s^2-w)(1+w)\frac{d\varphi}{dw}.\]
 
\[\dot\varphi=\frac{d\varphi}{dw}\frac{dw}{dt}=-3H(c_s^2-w)(1+w)\frac{d\varphi}{dw}.\]
 
On the other hand,
 
On the other hand,
Line 2,135: Line 2,146:
 
<div id="DE117_2"></div>
 
<div id="DE117_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
 
 +
=== Problem 105 ===
 
Consider the case of Universe filled with non-relativistic matter and quintessence and show that the condition to cross the phantom divide line $w=-1$ is equivalent to sign change in the following expression
 
Consider the case of Universe filled with non-relativistic matter and quintessence and show that the condition to cross the phantom divide line $w=-1$ is equivalent to sign change in the following expression
 
\[\frac{dH^2(z)}{dz}-3\Omega_{m0}H_0^2(1+z)^2.\]
 
\[\frac{dH^2(z)}{dz}-3\Omega_{m0}H_0^2(1+z)^2.\]
Line 2,141: Line 2,153:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">For the Universe model considered  the following holds (see problem [#DE55_2]):
+
     <p style="text-align: left;">For the Universe model considered  the following holds (see problem [[#DE55_2]]):
 
\[w(z)=\frac{\frac23(1+z)\frac{d\ln H}{dz}-1}{1-\frac{H_0^2}{H^2}\Omega_{m0}(1+z)^3}.\]
 
\[w(z)=\frac{\frac23(1+z)\frac{d\ln H}{dz}-1}{1-\frac{H_0^2}{H^2}\Omega_{m0}(1+z)^3}.\]
 
Then the condition $w(z)=-1$ can be rewritten as
 
Then the condition $w(z)=-1$ can be rewritten as
Line 2,152: Line 2,164:
 
<div id="DE118"></div>
 
<div id="DE118"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
 
 +
=== Problem 106 ===
 
Consider a model with the scale factor of the form
 
Consider a model with the scale factor of the form
 
\[a=a_c\left(\frac{t}{t-t_s}\right)^n,\]
 
\[a=a_c\left(\frac{t}{t-t_s}\right)^n,\]
Line 2,170: Line 2,183:
 
<div id="DE119"></div>
 
<div id="DE119"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 107 ===
 
Show, that for the model considered in the previous problem the parameter $H(t)$ and density $\rho(t)$ achieve their minimal values at the phantom divide point. (see K.Bamba, S.Capozziello, S.Nojiri, S.Odintsov, [http://arxiv.org/abs/1205.3421 arXiv:1205.3421])
 
Show, that for the model considered in the previous problem the parameter $H(t)$ and density $\rho(t)$ achieve their minimal values at the phantom divide point. (see K.Bamba, S.Capozziello, S.Nojiri, S.Odintsov, [http://arxiv.org/abs/1205.3421 arXiv:1205.3421])
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 2,192: Line 2,205:
 
<div id="DE120"></div>
 
<div id="DE120"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 108 ===
 
Find condition of intersection with the line $w=-1$ for the quintom Lagrangian
 
Find condition of intersection with the line $w=-1$ for the quintom Lagrangian
 
\[L=\frac12g^{\mu\nu}\left(\frac{\partial\varphi}{\partial x^\mu}\frac{\partial\varphi}{\partial x^\nu} - \frac{\partial\psi}{\partial x^\mu}\frac{\partial\psi}{\partial x^\nu} \right)-W(\varphi,\psi).\]
 
\[L=\frac12g^{\mu\nu}\left(\frac{\partial\varphi}{\partial x^\mu}\frac{\partial\varphi}{\partial x^\nu} - \frac{\partial\psi}{\partial x^\mu}\frac{\partial\psi}{\partial x^\nu} \right)-W(\varphi,\psi).\]

Latest revision as of 00:51, 3 December 2012




The Quintessence

The cosmological constant represents nothing but the simplest realization of the dark energy - the hypothetical substance introduced to explain the accelerated expansion of the Universe. There is a dynamical alternative to the cosmological constant - the scalar fields, formed in the post-inflation epoch. The most popular version is the scalar field $\varphi$ evolving in a properly designed potential $V(\varphi)$. Numerous models of such type differ by choice of the scalar field Lagrangian. The simplest model is the so-called quintessence. In antique and medieval philosophy this term (literally "the fifth essence", after the earth, water, air and fire) meant the concentrated extract, the creative force, penetrating all the material world. We shall understand the quintessence as the scalar field in a potential, minimally coupled to gravity, i.e. feeling only the influence of space-time curvature. Besides that we restrict ourselves to the canonic form of the kinetic energy. The action for fields of such type takes the form \[S=\int d^4x \sqrt{-g}\; L=\int d^4x \sqrt{-g}\left[\frac12g^{\mu\nu}\frac{\partial\varphi}{\partial x^\mu} \frac{\partial\varphi}{\partial x^\nu}-V(\varphi)\right].\] The equations of motion for the scalar field are obtained as usual, by variation of the action with respect to the field (see Chapter "Inflation").


Problem 1

Obtain the Friedman equations for the case of flat Universe filled with quintessence.


Problem 2

Obtain the general solution of the Friedman equations for the Universe filled with free scalar field, $V(\varphi)=0$.


Problem 3

Show that in the case of Universe filled with non-relativistic matter and quintessence the following relation holds: \[\dot H=-4\pi G(\rho_m+\dot\varphi^2).\]


Problem 4

Show that in the case of Universe filled with non-relativistic matter and quintessence the Friedman equations \[H^2=\frac{8\pi G}{3}\left[\rho_m+\frac12\dot\varphi^2+V(\varphi)\right],\] \[\dot H =-4\pi G(\rho_m+\dot\varphi^2)\] can be transformed to the form \[\frac{8\pi G}{3H_0^2}\left(\frac{d\varphi}{dx}\right)^2=\frac{2}{3H_0^2x}\frac{d\ln H}{dx}-\frac{\Omega_{m0}x}{H^2};\] \[\frac{8\pi G}{3H_0^2}V(x)=\frac{H^2}{H_0^2}-\frac{x}{6H_0^2}\frac{d H^2}{dx}-\frac12\Omega_{m0}x^3;\] \[x\equiv1+z.\]


Problem 5

Show that the conservation equation for quintessence can be obtained from the Klein-Gordon equation \[\ddot\varphi+3H\dot\varphi+\frac{dV}{d\varphi}=0.\]


Problem 6

Find the explicit form of Lagrangian describing the dynamics of the Universe filled with the scalar field in potential $V(\varphi)$. Use it to obtain the equations of motion for the scale factor and the scalar field.


Problem 7

In the flat Universe filled with scalar field $\varphi$ obtain the isolated equation for $\varphi$ only. (See S.Downes, B.Dutta, K.Sinha, arXiv:1203.6892)


Problem 8

What is the reason for the requirement that the scalar field's evolution in the quintessence model is slow enough?


Problem 9

Find the potential and kinetic energies for quintessence with the given state parameter $w$.


Problem 10

Find the dependence of state equation parameter $w$ for scalar field on the quantity \[x=\frac{\dot\varphi^2}{2V(\varphi)}\] and determine the ranges of $x$ corresponding to inflation in the slow-roll regime, matter-dominated epoch and the rigid state equation ($p\sim\rho$) limit correspondingly.


Problem 11

Show that if kinetic energy $K=\dot\varphi^2/2$ of a scalar field is initially much greater than its potential energy $V(\varphi)$, then it will decrease as $a^{-6}$.


Problem 12

Show that the energy density of a scalar field $\varphi$ behaves as $\rho_\varphi\propto a^{-n}$, $0\le n\le6$.


Problem 13

Show that dark energy density with the state equation $p=w(a)\rho(a)$ can be presented as a function of scale factor in the form \[\rho=\rho_0 a^{-3[1+\bar w(a)]},\] where $\bar w(a)$ is the parameter $w$ averaged in the logarithmic scale $$ \bar w(a) \equiv \frac{\int w(a)d\ln a}{\int {d\ln a} }. $$


Problem 14

Consider the case of Universe filled with non-relativistic matter and quintessence with the state equation $p=w\rho$ and show that the first Friedman equation can be presented in the form \[H^2(z)=H_0^2\left[\Omega_{m0}(1+z)^3+(1-\Omega_{m0})e^{3\int_0^z\frac{dz'}{1+z'}(1+w(z'))}\right].\]


Problem 15

Show that for the model of the Universe considered in the previous problem the state equation parameter $w(z)$ can be presented in the form \[w(z)=\frac{\frac23(1+z)\frac{d\ln H}{dz}-1}{1-\frac{H_0^2}{H^2}\Omega_{m0}(1+z)^3}.\]


Problem 16

Show that the result of the previous problem can be presented in the form \[w(z)=-1+(1+z)\frac{2/3E(z)E'(z)-\Omega_{m0}(1+z)^2}{E^2(z)-\Omega_{m0}(1+z)^3},\quad E(z)\equiv\frac{H(z)}{H_0}.\]


Problem 17

Show that decreasing of the scalar field's energy density with increasing of the scale factor slows down as the scalar field's potential energy $V(\varphi)$ starts to dominate over the kinetic energy density $\dot\varphi^2/2$.


Problem 18

Express the time derivative $\dot\varphi$ through the quintessence' density $\rho_\varphi$ and the state equation parameter $w_\varphi$.


Problem 19

Estimate the magnitude of the scalar field variation $\Delta\varphi$ during time $\Delta t$.


Problem 20

Show that in the radiation-dominated or matter-dominated epoch the variation of the scalar field is small, and the measure of its smallness is given by the relative density of the scalar field.


Problem 21

Show that in the quintessence $(w>-1)$ dominated Universe the condition $\dot{H}<0$ always holds.


Problem 22

Consider simple bouncing solution of Friedman equations that avoid singularity. This solution requires positive spatial curvature $k=+1$, negative cosmological constant $\Lambda<0$ and a "matter" source with equation of state $p=w\rho$ with $w$ in the range \[-1<w<-\frac13.\] In the special case $w=-2/3$ Friedman equations describe a constrained harmonic oscillator (a simple harmonic Universe). Find the corresponding solutions.
(Inspired by P.Graham et al. arXiv:1109.0282)


Problem 23

Derive the equation for the simple harmonic Universe (see previous problem), using the results of problem #DE04.


Problem 24

Barotropic liquid is a substance for which pressure is a single--valued function of density. Is quintessence generally barotropic?


Problem 25

Show that a scalar field oscillating near the minimum of potential is not a barotropic substance.


Problem 26

For a scalar field $\varphi$ with state equation $p=w\rho$ and relative energy density $\Omega_\varphi$ calculate the derivative \[w'=\frac{dw}{d\ln a}.\]


Problem 27

Calculate the sound speed in the quintessence field $\varphi(t)$ with potential $V(\varphi)$.


Problem 28

Find the dependence of quintessence energy density on redshift for the state equation $p_{DE}=w(z)\rho_{DE}$.


Problem 29

The equation of state $p=w(a)\rho$ for quintessence is often parameterized as $w(a)=w_0 + w_1(1-a)$. Show that in this parametrization energy density and pressure of the scalar field take the form: $$ \rho(a) \propto a^{-3[1+w_{\it eff}(a)]},\quad p(a) \propto (1+w_{\it eff}(a))\rho(a), $$ where $$ w_{\it eff}(a)=(w_0+w_1)+(1-a)w_1/\ln a. $$


Problem 30

Find the dependence of Hubble parameter on redshift in a flat Universe filled with non-relativistic matter with current relative density $\Omega_{m0}$ and dark energy with the state equation $p_{DE}=w(z)\rho_{DE}$.


Problem 31

Show that in a flat Universe filled with non--relativistic matter and arbitrary component with the state equation $p=w(z)\rho$ the first Friedman equation can be presented in the form: \[w(z)=-1+\frac13\frac{d\ln(\delta H^2/H_0^2)}{d\ln(1+z)},\] where \[\delta H^2 = H^2 - \frac{8\pi G}{3}\rho_m\] describes the contribution into the Universe's expansion rate of all components other than matter.


Problem 32

Express the time derivative of a scalar field through its derivative with respect to redshift $d\varphi/dz.$


Problem 33

Show that the particle horizon does not exist for the case of quintessence because the corresponding integral diverges (see Chapter 2(3)).


Problem 34

Show that in a Universe filled with quintessence the number of observed galaxies decreases with time.


Problem 35

Let $t$ be some time in the distant past $t\ll t_0$. Show that in a Universe dominated by a substance with state parameter $w>-1$ the current cosmic horizon (see Chapter 3) is \[R_h(t_0)\approx\frac32(1+\langle w\rangle)t_0,\] where $\langle w\rangle$ is the time-averaged value of $w$ from $t$ to the present time \[\langle w\rangle\equiv\frac{1}{t_0}\int\limits_t^{t_0} w(t)dt.\]


Problem 36

From WMAP$^*$ observations we infer that the age of the Universe is $t_0\approx13.7\cdot10^9$ years and cosmic horizon equals to $R_h(t_0)=H_0^{-1}\approx13.5\cdot10^9$ light-years. Show that these data imply existence of some substance with equation of state $w<-1/3$, - "dark energy".
$^*$ Wilkinson Microwave Anisotropy Probe is a spacecraft which measures differences in the temperature of the Big Bang's remnant radiant heat - the cosmic microwave background radiation - across the full sky.


Problem 37

The age of the Universe today depends upon the equation-of-state of the dark energy. Show that the more negative parameter $w$ is, the older Universe is today.


Problem 38

Consider a Universe filled with dark energy with state equation depending on the Hubble parameter and its derivatives, \[p=w\rho+g(H,\dot H, \ddot H,\ldots,;t).\] What equation does the Hubble parameter satisfy in this case?


Problem 39

Show that taking function $g$ (see the previous problem) in the form \[g(H,\dot H, \ddot H)=-\frac{2}{\kappa^2}\left(\ddot H + \dot H + \omega_0^2 H + \frac32(1+w)H^2-H_0\right),\ \kappa^2=8\pi G\] leads to the equation for the Hubble parameter identical to the one for the harmonic oscillator, and find its solution.


Problem 40

Find the time dependence of the Hubble parameter in the case of function $g$ (see problem #DE64) in the form \[g(H;t)= -\frac{2\dot f(t)}{\kappa^2f(t)}H,\ \kappa^2=8\pi G\] where $f(t)=-\ln(H_1+H_0\sin\omega_0t)$, $H_1>H_0$ is arbitrary function of time.


Problem 41

Show that in an open Universe the scalar field potential $V[\varphi(\eta)]$ depends monotonically on the conformal time $\eta$.


Problem 42

Reconstruct the dependence of the scalar field potential $V(a)$ on the scale factor basing on given dependencies for the field's energy density $\rho_\varphi(a)$ and state equation parameter $w(a)$.


Problem 43

Find the quintessence potential providing the power law growth of the scale factor $a\propto t^p$, where the accelerated expansion requires $p>1$.


Problem 44

Let $a(t)$, $\rho(t)$, $p(t)$ be solutions of Friedman equations. Show that for the case $k=0$ the function $\psi_n\equiv a^n$ is the solution of "Schr\"odinger equation" $\ddot\psi_n=U_n\psi_n$ with potential [see A.V.Yurov, arXiv:0905.1393] \[U_n=n^2\rho-\frac{3n}{2}(\rho+p).\]


Problem 45

Consider flat FLRW Universe filled with a scalar field $\varphi$. Show that in the case when $\varphi=\varphi(t)$, the Einstein equations with the cosmological term are reduced to the "Schrödinger equation" \[\ddot\psi=3(V+\Lambda)\psi\] with $\psi=a^3$. Derive the equation for $\varphi(t)$ (see A.V.Yurov, arXiv:0305019).


Problem 46

Consider FLRW space-time filled with non-interacting matter and dark energy components. Assume the following forms for the equation of state parameters of matter and dark energy \[w_m=\frac{1}{3(x^\alpha+1)},\quad w_{DE}=\frac{\bar{w}x^\alpha}{x^\alpha+1},\] where $x=a/a_*$ with $a_*$ being some reference value of $a$, $\alpha$ is some positive constant and $\bar{w}$ is a negative constant. Analyze the dynamics of the Universe in this model. (see S.Kumar,L.Xu, arXiv:1207.5582)

Tracker Fields

A special type of scalar fields - the so-called tracker fields - was discovered at the end of the nineties. The term reflects the fact that a wide range of initial values for the fields of such type rapidly converges to the common evolutionary track. The initial values of energy density for such fields may vary by many orders of magnitude without considerable effect on the long-time asymptote. The peculiar property of tracker solutions is the fact that the state equation parameter for such a field is determined by the dominant component of the cosmological background.
It should be stressed that, unlike the standard attractor, the tracker solution is not a fixed point (in the sense of a solution corresponding to the fixed point in a system of autonomous differential equations ): the ratio of the scalar field energy density to that of background component (matter or radiation) continuously changes as the quantity $\varphi$ descends along the potential. It is well desirable feature because we want the energy density $\varphi$ to exceed ultimately the background density and to transfer the Universe into the observed phase of the accelerated expansion.
Below we consider a number of concrete realizations of the tracker fields.


Problem 47

Show that initial value of the tracker field should obey the condition $\varphi_0=M_{Pl}$.


Problem 48

Show that densities of kinetic and potential energy of the scalar field $\varphi$ in the potential of the form \[V(\varphi)=M^4\exp(-\alpha\varphi M),\quad M\equiv\frac{M_{PL}^2}{16\pi}\] are proportional to the density of the concomitant component (matter or radiation) and therefore it realizes the tracker solution.


Problem 49

Consider a scalar field potential \[V(\varphi)=\frac A n\varphi^{-n},\] where $A$ is a dimensional parameter and $n>2$. Show that the solution $\varphi(t)\propto t^{2/(n+2)}$ is a tracker field under condition $a(t)\propto t^m$, $m=1/2$ or $2/3$ (either radiation or non-relativistic matter dominates).


Problem 50

Show that the scalar field energy density corresponding to the tracker solution in the potential \[V(\varphi)=\frac A n\varphi^{-n}\] (see the previous problem #DE73) decreases slower than the energy density of radiation or non-relativistic matter.


Problem 51

Find the equation of state parameter $w_\varphi\equiv p_\varphi/\rho_\varphi$ for the scalar field of problem #DE73.


Problem 52

Use explicit form of the tracker field in the potential of problem #DE73 to verify the value of $w_\varphi$ obtained in the previous problem.

The K-essence

Let us introduce the quantity $$X\equiv \frac{1}{2}{{g}^{\mu \nu }}\frac{\partial \varphi }{\partial {{x}^{\mu }}}\frac{\partial \varphi }{\partial {{x}^{\nu }}}$$ and consider action for the scalar field in the form $$ S=\int{{{d}^{4}}x\sqrt{-g}}\; L\left( \varphi ,X \right), $$ where Lagrangian $L$ is generally speaking an arbitrary function of variables $\varphi$ and $X.$ The dark energy model realized due to modification of the kinetic term with the scalar field, is called the $k$-essence. The traditional action for the scalar field corresponds to $$ L\left( \varphi ,X \right)=X-V(\varphi ). $$ In the problems proposed below we restrict ourselves to the subset of Lagrangians of the form $$ L\left( \varphi ,X \right)=K(X)-V(\varphi ), $$ where $K(X)$ is a positively defined function of kinetic energy $X$. In order to describe a homogeneous Universe we should choose $$ X=\frac{1}{2}{\dot{\varphi}^{2}}. $$


Problem 53

Find the density and pressure of the $k$-essence.


Problem 54

Construct the equation of state for the $k$-essence.


Problem 55

Find the sound speed in the $k$-essence.


Problem 56

The sound speed $c_s$ in any medium must satisfy two fundamental requirements: first, the sound waves must be stable and second, its velocity value should be low enough to preserve the causality condition. Therefore \[0\le c_s^2\le1.\] Reformulate the latter condition in terms of scale factor dependence for the equation of state parameter $w(a)$ for the case of the $k$-essence.


Problem 57

Find the state equation for the simplified $k$-essence model with Lagrangian $L=F(X)$ (the so-called pure kinetic $k$-essence).


Problem 58

Find the equation of motion for the scalar field in the pure kinetic $k$-essence.


Problem 59

Show that the scalar field equation of motion for the pure kinetic $k$-essence model gives the tracker solution.


Phantom Energy

The full amount of available cosmological observational data shows that the state equation parameter $w$ for dark energy lies in a narrow range near the value $w=-1$. In the previous subsections we considered the region $-1\le w\le-1/3$. The lower bound $w=-1$ of the interval corresponds to the cosmological constant, and all the remainder can be covered by the scalar fields with canonic Lagrangians. Recall that the upper bound $w=-1/3$ appears due to the necessity to provide the observed accelerated expansion of Universe. What other values of parameter $w$ can be used? The question is very hard to answer for the energy component we know so little about. General Relativity restricts possible values of the energy - momentum tensor by the so-called "energy conditions" (see Chapter 2). One of the simplest among them is the so-called Null Dominant Energy Condition (NDEC) $\rho+p\ge0$. The physical motivation of the latter is to avoid the vacuum instability. Applied to the dynamics of Universe, the NDEC requires that density of any allowed energy component cannot grow with the expansion of the Universe. The cosmological constant with $\dot\rho_\Lambda=0$, $\rho_\Lambda=const$ represents the limiting case. Because of our ignorance concerning the nature of dark energy it is reasonable to question whether this mysterious substance can differ from the already known "good" sources of energy and if it can violate the NDEC. Taking into account that dark energy must have positive density (it is necessary to make the Universe flat) and negative pressure (to provide the accelerated expansion of Universe), the violation of the NDEC must lead to $w<-1$. Such substance is called the phantom energy. The phantom field $\varphi$ minimally coupled to gravity has the following action: \[S=\int d^4x \sqrt{-g}L=-\int d^4x \sqrt{-g}\left[\frac12g^{\mu\nu}\frac{\partial\varphi}{\partial x_\mu} \frac{\partial\varphi}{\partial x_\nu}+V(\varphi)\right],\] which differs from the canonic action for the scalar field only by the sign of the kinetic term.


Problem 60

Show that the action of a scalar field minimally coupled to gravitation \[S=\int d^4x\sqrt{-g}\left[\frac12(\nabla\varphi)^2-V(\varphi)\right]\] leads, under the condition $\dot\varphi^2/2<V(\varphi)$, to $w_\varphi<-1$, i.e. the field is phantom.


Problem 61

Obtain the equation of motion for the phantom scalar field described by the action of the previous problem.


Problem 62

Find the energy density and pressure of the phantom field.


Problem 63

Show that the phantom energy density grows with time. Find the dependence $\rho(a)$ for $w=-4/3$.


Problem 64

Show that the phantom scalar field violates all four energety conditions.


Problem 65

Show that in the phantom scalar field $(w<-1)$ dominated Universe the condition $\dot{H}>0$ always holds.


Problem 66

As we have seen in Chapter 3, the Friedman equations, describing spatially flat Universe, possess the duality, which connects the expanding and contracting Universe by appropriate transformation of the state equation. Consider the Universe where the weak energetic condition $\rho\ge0,\ \rho+p\ge0$ holds and show that the ideal liquid associated with the dual Universe is a phantom liquid or the cosmological constant.


Problem 67

Show that the Friedman equations for the Universe filled with dark energy in the form of cosmological constant and a substance with the state equation $p=w\rho$ can be presented in the form of nonlinear oscillator (see M.Dabrowski arXiv:0307128 ) \[\ddot X-\frac{D^2}{3}\Lambda X+D(D-1)kX^{1-2/D}=0\] where \[X=a^{D(w)},\quad D(w)=\frac32(1+w).\]


Problem 68

Show that the Universe dual to the one filled with a free scalar field, is described by the state equation $p=-3\rho$.


Problem 69

Show that in the phantom component of dark energy the sound speed exceeds the light speed.


Problem 70

Construct the phantom energy model with negative kinetic term in the potential satisfying the slow-roll conditions \[\frac 1 V \frac{dV}{d\varphi}\ll1\] and \[\frac 1 V \frac{d^2V}{d\varphi^2}\ll1.\]

Disintegration of Bound Structures

Historically the first criterion for decay of gravitationally bound systems due to the phantom dark energy was proposed by Caldwell, Kamionkowski and Weinberg (CKW) (see arXiv:astro-ph/0302506v1). The authors argue that a satellite orbiting around a heavy attracting body becomes unbound when total repulsive action of the dark energy inside the orbit exceeds the attraction of the gravity center. Potential energy of gravitational attraction is determined by the mass $M$ of the attracting center, while the analogous quantity for repulsive potential equals to $\rho+3p$ integrated over the volume inside the orbit. It results in the following rough estimate for the disintegration condition \begin{equation}\label{disintegration} -\frac{4\pi}{3}(\rho+3p)R^3\simeq M. \end{equation}


Problem 71

Show that for $w\ge-1$ a system gravitationally bound at some moment of time (Milky Way for example) remains bound forever.


Problem 72

Show that in the phantom energy dominated Universe any gravitationally bound system will dissociate with time.


Problem 73

Show that in a Universe filled with non-relativistic matter a hydrogen atom will remain a bound system forever.


Problem 74

Demonstrate, that any gravitationally bound system with mass $M$ and radius (linear scale) $R$, immersed in the phantom background $\left( {w < - 1} \right)$ will decay in time \[t \simeq P\frac{|1+3w|}{|1+w|}\frac29\sqrt{\frac{3}{2\pi}}\] before Big Rip. Here \[P=2\pi\sqrt{\frac{R^3}{GM}}\] is the period on the circular orbit of radius $R$ around the considered system.


Problem 75

Use the result of the previous problem to determine the time of disintegration for the following systems: galaxy clusters, Milky Way, Solar System, Earth, hydrogen atom. Consider the case $w=-3/2$.


Big Rip, Pseudo Rip, Little Rip

The future finite-time singularity is an essential element of phantom cosmology (see S.Nojiri, S. Odintsov, arXiv:hep-th/0505215). One may classify the future singularities as in the following way (see S.Nojiri, S. Odintsov and S.Tsajikava, arXiv:hep-th/0501025):
1. For $t\to t_s$, $a\to\infty$, $\rho\to\infty$, $|p|\to\infty$ ("Big Rip").
The density of phantom dark energy and scale factor become infinite at some finite time $t_s$.
2. For $t\to t_s$, $a\to a_s$, $\rho\to\rho_s$ or $\rho\to0$, $|p|\to\infty$ ("sudden singularity").
The condition $w<-1$ is necessary for future singularities, but it is not sufficient. If $w$ approaches to $-1$ sufficiently rapidly, then it is possible to have a model in which there are no future singularities. Models without future singularities in which $\rho_{DE}$ increases with time will eventually lead to dissolution of bound systems. This process received the name "Little Rip" (see P.Frampton, K.Ludwick and R.Scherrer, arXiv:1106.4996). In the Big Rip the scale factor and energy density diverge at finite future time. As opposed to Big Rip in the $\Lambda$CDM, there is no such divergence. Little Rip represents an interpolation between these two limit cases.
3. For $t\to t_s$, $a\to a_s\ne0$, $\rho\to\infty$, $|p|\to\infty$.
4. For $t\to t_s$, $a\to a_s\ne0$, $\rho\to\rho_s$ (including $\rho_s=0$), while derivatives of $H$ diverge.
Here $t_s$, $a_s\ne0$ and $\rho_s$ are constants.



Problem 76

For the flat Universe composed of matter $(\Omega_m\simeq0.3)$ and phantom energy $(w=-1.5)$ find the time interval left to the Big Rip.


Immediate consequence of approaching the Big Rip is the dissociation of bound systems due to negative pressure inside them.


Problem 77

Show that all little-rip models can be described by condition $\ddot f>0$ where $f(t)$ is a nonsingular function such that $a(t)=\exp[f(t)]$.


Problem 78

Consider the approach of the following authors (see S. Nojiri, S.D. Odintsov, and S. Tsujikawa, Phys. Rev. D 71, 063004 (2005); S. Nojiri and S.D. Odintsov, Phys. Rev. D 72, 023003 (2005); H. Stefancic, Phys. Rev. D 71, 084024 (2005)), who expressed the pressure as a function of the density in the form \[p=-\rho-f(\rho).\] Show that condition $f(\rho>0)$ ensures that the density increases with the scale factor.


Problem 79

Find the dependencies $a(\rho)$ and $t(\rho)$ for the case of flat Universe filled by a substance with the following state equation \[p=-\rho-f(\rho).\]


Problem 80

Solve the previous problem in the case of \(f(\rho)A\rho^\alpha,\ \alpha=const.\)


Problem 81

Find the condition for big-rip singularity in the case $p=-\rho-f(\rho).$


Problem 82

Show that taking a power law for $f(\rho)$, namely $f(\rho)=A\rho^\alpha$ a future singularity can be avoided for $\alpha\le1/2$.


Problem 83

Solve the previous problem using the condition for absence of future singularities obtained in Problem #RIPS_1.


Problem 84

Formulate the condition for the absence of a finite-time future (Big Rip) singularity in terms of function $\rho(a)$ .


The problems below develop an alternative approach to investigate the singularities in the phantom Universe (see P-H. Chavanis, arXiv:1208.1195)


Problem 85

Consider the polytropic equation of state \[p=\alpha\rho+k\rho^{1+1/n}\equiv-\rho+\rho\left(1+\alpha+k\rho^{1/n}\right)\] under assumption $-1<\alpha\le1$. The case $\alpha=-1$ is treated separately in Problem #RIPS_7_4. The additional assumption $1+\alpha+k\rho^{1/n}\le0$ (and necessary condition $k<0$) guarantees that the density increases with the scale factor. This corresponds to phantom Universe. Find explicit dependence $\rho(a)$ and analyze limits $a\to0$ and $a\to\infty$.


Problem 86

Consider the previous problem with $\alpha=-1$ and $k<0$. This equation of state was introduced by Nojiri and Odintsov (see problem #RIPS_7_3). Chavanis re-derives their results in a more transparent form.


The little-rip dissociates all bound structures, but
the strength of the dark energy is not enough to rip
apart space-time as there is no finite-time singularity
P. Frampton, K. Ludwick1, and R. Scherrer

(see A. Astashenok, S. Nojiri, S. Odintsov, and R. Scherrer, arXiv:1203.1976)


Problem 87

Show that for any bound system the rip always occurs when either $H$ diverges or $\dot H$ diverges (assuming $\dot H>0$ ( expansion of Universe is accelerating)).


Problem 88

Solve the previous problem in terms of function $f(\rho)$.


Problem 89

Perform analysis of possible singularities in terms of characteristics of the scalar field $\varphi$ with the potential $V(\varphi)$.


All the Big Rip, Little Rip and Pseudo-Rip arise from the assumption that the dark energy density $\rho(a)$ is monotonically increasing. Let us investigate what will happen if this assumption is broken and then propose a so-called "Quasi-Rip" scenario, which is driven by a type of quintom dark energy. In this work, we consider an explicit model of Quasi-Rip in details. We show that Quasi-Rip has an unique feature different from Big Rip, Little Rip and Pseudo-Rip. Our universe has a chance to be rebuilt in the ash after the terrible rip. This might be the last hope in the "hopeless" rip.



Problem 90

So-called soft singularities are characterized by a diverging $\ddot a$ whereas both the scale factor $a$ and $\dot a$ are finite. Analyze features of intersections between the soft singularities and geodesics.


Problem 91

(see F.Cannata, A. Kamenshchik, D.Regoli, arXiv:0801.2348) The power law cosmological evolution $a(t)\propto t^\beta$ leads to the Hubble parameter $H(t)\propto 1/t$. Consider a "softer" version of the cosmological evolution given by the law \[H(t)=\frac{S}{t^\alpha},\] where $S$ is a positive constant and $0<\alpha<1$. Analyze the dynamics of such model at $t\to 0$.


Problem 92

Reconstruct the potential of the scalar field model, producing the given cosmological evolution $H(t)$.


Problem 93

Reconstruct the potential of the scalar field model, producing the cosmological evolution \begin{equation}\label{RIPS_68} H(t)=\frac{S}{t^\alpha}, \end{equation} using the technique described in the previous problem.

The Statefinder

In the models including dark energy in different forms it is useful to introduce a pair of cosmological parameters $\{r,s\}$, which is called the statefinder (see V.Sahni, T.Saini, A.Starobinsky, U.Alam astro-ph/0201498): \[r\equiv\frac{\dddot a}{aH^3},\ s\equiv\frac{r-1}{3(q-1/2)}.\] These dimensionless parameters are constructed from the scale factor and its derivatives. Parameter $r$ is the next member in the sequence of the kinematic characteristics describing the Universe's expansion after the Hubble parameter $H$ and the deceleration parameter $q$ (see Chapter "Cosmography"). Parameter $s$ is the combination of $q$ and $r$ chosen in such a way that it is independent of the dark energy density. The values of these parameters can be reconstructed with high precision basing on the available cosmological data. After that the statefinder can be successfully used to identify different dark energy models.


Problem 94

Explain the advantages for the description of the current Universe's dynamics brought by the introduction of the statefinder.


Problem 95

Express the statefinder $\{r,s\}$ in terms of the total density, pressure and their time derivatives for a spatially flat Universe.


Problem 96

Show that for a flat Universe filled with a two-component liquid composed of non--relativistic matter (dark matter + baryons) and dark energy with relative density $\Omega _{DE} = \rho _{DE} /\rho _{cr} $ the statefinder takes the form $$ r = 1 + {\frac92}\Omega _{DE} w(1 + w) - {\frac32}\Omega _{DE} {\frac{\dot w}{H}}; $$ $$ s = 1 + w - {\frac13}{\frac{\dot w}{wH}};\quad w \equiv {\frac{p_{DE} } {\rho _{DE} }}. $$


Problem 97

Express the statefinder in terms of Hubble parameter $H(z)$ and its derivatives.


Problem 98

Find the statefinders
a) for dark energy in the form of cosmological constant;
b) for the case of time--independent state equation parameter $w$;
c) for dark energy in the form of quintessence.


Problem 99

Express the photometric distance $d_L(z)$ through the current values of parameters $q$ and $s$.


Crossing the Phantom Divide

In the quintessence model of dark energy $-1<w<-1/3$. In the phantom model with negative kinetic energy $w<-1$. Recent cosmological data seem to indicate that there occurred the crossing of the phantom divide line in the near past. This means that equation of state parameter $w_{DE}$ crosses the phantom divide line $w_{DE}=-1$. This crossing to the phantom region is possible neither for an ordinary minimally coupled scalar field nor for a phantom field. There are at least three ways to solve this problem. If dark energy behaves as quintessence at early stage, and evolves as phantom at the later stage, a natural suggestion would be to consider a 2-field model (quintom model): a quintessence and a phantom. The next possibility, discussed in the next Chapter, is to consider an interacting model, in which dark energy interacts with dark matter. Yet another possibility would be that General Relativity fails at cosmological scales. In this case quintessence or phantom energy can cross the phantom divide line in a modified gravity theory. We investigate this approach in Chapter 12.



Problem 100

Show that at the point of transition between the quintessence and the phantom phases $\dot H$ vanishes.


Problem 101

Show that the sound speed of a single perfect barotropic fluid is diverges when $w$ crosses the phantom divide line.


Problem 102

Find a dynamical law for the equation of state parameter $w=p/\rho$ in the barotropic cosmic fluid (see N.Caplar, H.Stefancic, arXiv:1208.0449).


Problem 103

Using the results of previous problem, find the functions $w(z)$, $\rho(z)$ and $p(z)$ for the simplest possibility $c_S=const$.


Problem 104

Realize the procedure described in the problem #DE117_11 for the case of a minimally coupled scalar field $\varphi$ with potential $V(\varphi)$ in a spatially flat Universe.


Problem 105

Consider the case of Universe filled with non-relativistic matter and quintessence and show that the condition to cross the phantom divide line $w=-1$ is equivalent to sign change in the following expression \[\frac{dH^2(z)}{dz}-3\Omega_{m0}H_0^2(1+z)^2.\]


Problem 106

Consider a model with the scale factor of the form \[a=a_c\left(\frac{t}{t-t_s}\right)^n,\] where $a_c$ is a constant, $n>0$, $t_s$ is the time of a Big Rip singularity. Show that on the interval $0<t<t_s$ there is crossing of the phantom divide line $w=-1$.


Problem 107

Show, that for the model considered in the previous problem the parameter $H(t)$ and density $\rho(t)$ achieve their minimal values at the phantom divide point. (see K.Bamba, S.Capozziello, S.Nojiri, S.Odintsov, arXiv:1205.3421)


Problem 108

Find condition of intersection with the line $w=-1$ for the quintom Lagrangian \[L=\frac12g^{\mu\nu}\left(\frac{\partial\varphi}{\partial x^\mu}\frac{\partial\varphi}{\partial x^\nu} - \frac{\partial\psi}{\partial x^\mu}\frac{\partial\psi}{\partial x^\nu} \right)-W(\varphi,\psi).\]