Difference between revisions of "Energy balance in an expanding Universe"

From Universe in Problems
Jump to: navigation, search
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:Dynamics of the Expanding Universe|7]]
 
[[Category:Dynamics of the Expanding Universe|7]]
 +
__TOC__
  
= Energy balance in an expanding Universe =
+
<div id="equ_en1"></div><div style="border: 1px solid #AAA; padding:5px;">
 
+
=== Problem 1: Newtonian interpretation ===
<div id="equ_en1"></div>
+
=== Problem 1. ===
+
 
Show that the first Friedman equation can be treated as the energy conservation law in Newtonian mechanics. Use this equation to classify the solutions describing different dynamics of the Universe.
 
Show that the first Friedman equation can be treated as the energy conservation law in Newtonian mechanics. Use this equation to classify the solutions describing different dynamics of the Universe.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">See [[Newtonian_cosmology#equ48|problem]].</p>
+
     <p style="text-align: left;">See [[Newtonian_cosmology#equ48|here]].</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ_en2"></div>
+
<div id="equ_en2"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2. ===
+
=== Problem 2: thermodynamic derivation ===
 
Obtain the conservation equation for the expanding Universe using only thermodynamical considerations.
 
Obtain the conservation equation for the expanding Universe using only thermodynamical considerations.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 25: Line 24:
 
\[\dot{\rho}+3\frac{\dot{a}}{a}(\rho+p)=0.\]</p>
 
\[\dot{\rho}+3\frac{\dot{a}}{a}(\rho+p)=0.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ_en3"></div>
+
<div id="equ_en3"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 3. ===
+
=== Problem 3: the lost energy of the Universe ===
 
A photon's wavelength is redshifted due to the Universe' expansion. Estimate the rate of change of the energy of the Universe due to this process.
 
A photon's wavelength is redshifted due to the Universe' expansion. Estimate the rate of change of the energy of the Universe due to this process.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
   <div class="NavHead">solution</div>
+
   <div class="NavHead">no solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div>
+
</div></div>

Latest revision as of 16:40, 13 October 2012

Problem 1: Newtonian interpretation

Show that the first Friedman equation can be treated as the energy conservation law in Newtonian mechanics. Use this equation to classify the solutions describing different dynamics of the Universe.


Problem 2: thermodynamic derivation

Obtain the conservation equation for the expanding Universe using only thermodynamical considerations.


Problem 3: the lost energy of the Universe

A photon's wavelength is redshifted due to the Universe' expansion. Estimate the rate of change of the energy of the Universe due to this process.