Difference between revisions of "Friedman-Lemaitre-Robertson-Walker (FLRW) metric"

From Universe in Problems
Jump to: navigation, search
(Problem 1.)
(Problem 20: Christoffel symbols for FLRW metric)
 
(24 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:Dynamics of the Expanding Universe]]
+
[[Category:Dynamics of the Expanding Universe|3]]
 
+
__TOC__
= Friedman-Lemaitre-Robertson-Walker (FLRW) metric =
+
<div id="equ16"></div><div style="border: 1px solid #AAA; padding:5px;">
 
+
=== Problem 1: expanding baloon ===
 
+
<div id="equ16"></div>
+
=== Problem 1. ===
+
 
Consider two points $A$ and $B$ on a two-dimensional sphere with radius $a(t)$ depending on time. Find the distance between the points $r_{AB}$, as measured along the surface of the sphere, and their relative velocity $v_{AB}={dr_{AB}}/{dt}$.
 
Consider two points $A$ and $B$ on a two-dimensional sphere with radius $a(t)$ depending on time. Find the distance between the points $r_{AB}$, as measured along the surface of the sphere, and their relative velocity $v_{AB}={dr_{AB}}/{dt}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
[[File:2_16.jpg|center|thumb|400px|ghfhgfhgfh]]
+
[[File:2_16.jpg|center|thumb|400px|]]
 
     <p style="text-align: left;">When the radius of the sphere grows with time as $a(t)$, the angle $\theta_{AB}$ between two arbitrary points $A$ and $B$ is constant. Therefore the distance between the points changes as
 
     <p style="text-align: left;">When the radius of the sphere grows with time as $a(t)$, the angle $\theta_{AB}$ between two arbitrary points $A$ and $B$ is constant. Therefore the distance between the points changes as
 
$r_{AB}(t) = a(t)\theta _{AB}$ and relative velocity is $v_{AB} = \dot r_{AB} = \dot a(t)\theta _{AB} = \frac{\dot a}{a}r_{AB}.$
 
$r_{AB}(t) = a(t)\theta _{AB}$ and relative velocity is $v_{AB} = \dot r_{AB} = \dot a(t)\theta _{AB} = \frac{\dot a}{a}r_{AB}.$
 
On denoting $\frac{\dot a}{a} \equiv H(t),$ one recovers the Hubble's law.</p>
 
On denoting $\frac{\dot a}{a} \equiv H(t),$ one recovers the Hubble's law.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ17"></div>
 
  
=== Problem 2. ===
+
<div id="equ17"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 2: scale factor and Hubble's parameter ===
 
The comoving reference frame is defined so that matter is at rest in it, and the distance $\chi_{AB}$ between any two points $A$ and $B$ is constant. Show that in a homogeneous and isotropic Universe the proper (physical) distance $r_{AB}$ between two points is
 
The comoving reference frame is defined so that matter is at rest in it, and the distance $\chi_{AB}$ between any two points $A$ and $B$ is constant. Show that in a homogeneous and isotropic Universe the proper (physical) distance $r_{AB}$ between two points is
 
related to the comoving one as
 
related to the comoving one as
Line 39: Line 36:
 
The scale factor represents an analogue of radius of the two-dimensional sphere from the previous problem. Its normalization is arbitrary and it determines the unit of length in the comoving reference frame. If the normalization is fixed then the scale factor determines distance between objects or observers at a given moment of time. The comoving distance between them $\chi_{AB}$ is analogous to the angle $\theta_{AB}$ from the previous problem and it can be treated as a Lagrangian (comoving) coordinate of the point $B$ in the reference frame centered in point $A$.</p>
 
The scale factor represents an analogue of radius of the two-dimensional sphere from the previous problem. Its normalization is arbitrary and it determines the unit of length in the comoving reference frame. If the normalization is fixed then the scale factor determines distance between objects or observers at a given moment of time. The comoving distance between them $\chi_{AB}$ is analogous to the angle $\theta_{AB}$ from the previous problem and it can be treated as a Lagrangian (comoving) coordinate of the point $B$ in the reference frame centered in point $A$.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ21"></div>
+
 
=== Problem 3. ===
+
<div id="equ21"></div><div style="border: 1px solid #AAA; padding:5px;">
Consider a spacetime with  homogeneous and isotropic spatial section of constant time $dt=0$. Show that in the comoving coordinates its metric necessarily has the form of the Friedman-Lemaitre-Robertson-Walker (FLRW)$^*$ metric:
+
 
 +
=== Problem 3: FLRW metric ===
 +
Consider a spacetime with  homogeneous and isotropic spatial section of constant time $dt=0$. Show that in the comoving coordinates its metric necessarily has the form of the Friedman-Lemaître-Robertson-Walker (FLRW)$^*$ metric:
 
\begin{equation}\label{FLRW1}
 
\begin{equation}\label{FLRW1}
 
     ds^2=dt^2-a^2(t)
 
     ds^2=dt^2-a^2(t)
Line 59: Line 58:
 
The time coordinate $t$, which is the proper time for the comoving matter, is referred to as cosmic (or cosmological) time.
 
The time coordinate $t$, which is the proper time for the comoving matter, is referred to as cosmic (or cosmological) time.
  
$^*$Depending on geographical or historical preferences, named after a subset of the four scientists: Alexander Friedmann, Georges Lemaitre, Howard Percy Robertson and Arthur Geoffrey Walker. Thus abbreviations FRW, RW or FL are also used.
+
$^*$Depending on geographical or historical preferences, named after a subset of the four scientists: Alexander Friedman (also spelled Friedmann), Georges Lemaître, Howard Percy Robertson and Arthur Geoffrey Walker. Thus abbreviations FRW, RW or FL are also used.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">IMAGE!!!
+
     <p style="text-align: left;">
 
Spatial isotropy implies spherical symmetry. In this case the spatial line element in comoving coordinates $(\chi,\vartheta,\phi)$ takes the form:
 
Spatial isotropy implies spherical symmetry. In this case the spatial line element in comoving coordinates $(\chi,\vartheta,\phi)$ takes the form:
 
\[dl ^2
 
\[dl ^2
Line 71: Line 70:
 
where $f(\chi)$ is a real-valued function which must satisfy the condition $f(\chi)\approx \chi $ at $\chi \rightarrow 0$ in the case of non-singular metrics.
 
where $f(\chi)$ is a real-valued function which must satisfy the condition $f(\chi)\approx \chi $ at $\chi \rightarrow 0$ in the case of non-singular metrics.
  
Let us fix the angle $\theta$ and consider the triangle $DGE$ in the plane $\theta=\pi/2$, shown on Fig.~\ref{fig:G}. Here $DH=HE=\chi$, $HA=\delta$, the distance $DE$ and angle $\gamma$ are assumed to be small. Angles $GDH$ and $GEH$ are both equal to $\gamma$ due to homogeneity and isotropy. Note also that \begin{equation}\label{21-1}
+
Let us fix the angle $\theta$ and consider the triangle $DGE$ in the plane $\theta=\pi/2$, shown on the figure: </p>
 +
 
 +
[[File:FLRW1.png|center|thumb|400px|Geometry in an isotropic and homogeneous space, the section $\theta=\pi/2$.]]
 +
 
 +
<p style="text-align: left;">Here $DH=HE=\chi$, $HA=\delta$, the distance $DE$ and angle $\gamma$ are assumed to be small. Angles $GDH$ and $GEH$ are both equal to $\gamma$ due to homogeneity and isotropy. Note also that \begin{equation}\label{21-1}
 
   EF \simeq EF' = f( 2\chi )\gamma = f( \chi)\beta
 
   EF \simeq EF' = f( 2\chi )\gamma = f( \chi)\beta
 
\end{equation}
 
\end{equation}
Line 95: Line 98:
 
(d\theta^2+\sin^2\theta d\varphi^2)\right\}.\]</p>
 
(d\theta^2+\sin^2\theta d\varphi^2)\right\}.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ20"></div>
+
 
=== Problem 4. ===
+
<div id="equ20"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
 
 +
=== Problem 4: another representation ===
 
Show that the FLRW metric (\ref{FLRW1}) can be presented in the form
 
Show that the FLRW metric (\ref{FLRW1}) can be presented in the form
 
\begin{equation}\label{FLRW2}
 
\begin{equation}\label{FLRW2}
Line 106: Line 111:
 
     (d\theta^2+\sin^2\theta d\varphi^2) \right\},
 
     (d\theta^2+\sin^2\theta d\varphi^2) \right\},
 
\end{equation}
 
\end{equation}
where $k=0,\pm1$ is the sign of spatial curvature ([[#equ28n|see problem]]).
+
where $k=0,\pm1$ is the sign of [[#equ28n|spatial curvature]].
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 134: Line 139:
 
(d\theta^2+\sin^2\theta d\varphi^2) \right\}.\]</p>
 
(d\theta^2+\sin^2\theta d\varphi^2) \right\}.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ57"></div>
+
 
=== Problem 5. ===
+
<div id="equ57"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5: sign of spatial curvature ===
 
Show that only the sign of spatial curvature has physical meaning, as renormalization of the scale factor rescales the curvature.
 
Show that only the sign of spatial curvature has physical meaning, as renormalization of the scale factor rescales the curvature.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 149: Line 155:
 
where $\beta=const$. Then we can always introduce $\chi=\beta r$ and $a(t)=\alpha(t)/\beta$ and bring the metric to the canonical form (\ref{FLRW2}). Note, that this has sense only if $k\neq 0$.</p>
 
where $\beta=const$. Then we can always introduce $\chi=\beta r$ and $a(t)=\alpha(t)/\beta$ and bring the metric to the canonical form (\ref{FLRW2}). Note, that this has sense only if $k\neq 0$.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ56"></div>
+
<div id="equ56"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 6. ===
+
=== Problem 6: spatially flat Universe ===
 
Why is the normalization of the scale factor not fixed for a spatially flat Universe, for which $k=0$?
 
Why is the normalization of the scale factor not fixed for a spatially flat Universe, for which $k=0$?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 160: Line 167:
 
     <p style="text-align: left;">It follows from the fact that in the case of a flat Universe there is no spatial scale to normalize the scale factor by.</p>
 
     <p style="text-align: left;">It follows from the fact that in the case of a flat Universe there is no spatial scale to normalize the scale factor by.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ22"></div>
+
<div id="equ22"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 7. ===
+
=== Problem 7: geometry of the closed Universe ===
 
Consider a closed Universe (with $k=+1$) and find the length of equator and full volume of its spatial section $dt=0$.
 
Consider a closed Universe (with $k=+1$) and find the length of equator and full volume of its spatial section $dt=0$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 186: Line 193:
 
\[V_{universe} = 2 \pi^2 a^3.\]</p>
 
\[V_{universe} = 2 \pi^2 a^3.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ23"></div>
+
 
=== Problem 8. ===
+
<div id="equ23"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 8: electric charge of the Universe ===
 
Present arguments in favor of the affirmation that the electric charge of a closed Universe should be exactly zero.
 
Present arguments in favor of the affirmation that the electric charge of a closed Universe should be exactly zero.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 199: Line 207:
 
Let us fix some arbitrary electric field distribution $\vec E$ in the closed world and find the corresponding charge density $\varepsilon _e$ using the equation $ \mbox{div}\vec E = 4\pi \varepsilon _e$. It will always turn out that the total charge equals to zero, i.e. $Z = \int \varepsilon_e dV = 0$, as in the absence of infinity the lines of force always start from one charge and necessarily end on another charge of the opposite sign, which thus neutralizes the former charge.</p>
 
Let us fix some arbitrary electric field distribution $\vec E$ in the closed world and find the corresponding charge density $\varepsilon _e$ using the equation $ \mbox{div}\vec E = 4\pi \varepsilon _e$. It will always turn out that the total charge equals to zero, i.e. $Z = \int \varepsilon_e dV = 0$, as in the absence of infinity the lines of force always start from one charge and necessarily end on another charge of the opposite sign, which thus neutralizes the former charge.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ24"></div>
+
 
=== Problem 9. ===
+
<div id="equ24"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 9: Hubble's law ===
 
Using the FLRW metric, derive the Hubble's law.
 
Using the FLRW metric, derive the Hubble's law.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 214: Line 223:
 
  = \frac{\dot a(t)}{a(t)}a(t)\chi  = H(t)D.\]</p>
 
  = \frac{\dot a(t)}{a(t)}a(t)\chi  = H(t)D.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equ64"></div>
+
<div id="equ64"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 10. ===
+
=== Problem 10: conformal time ===
 
Conformal time $\eta$ is defined as
 
Conformal time $\eta$ is defined as
 
\[dt=a(\eta)d\eta.\]
 
\[dt=a(\eta)d\eta.\]
Line 236: Line 246:
 
=\frac{d\,\ln a}{d\eta}.\]</p>
 
=\frac{d\,\ln a}{d\eta}.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ71"></div>
+
 
=== Problem 11. ===
+
<div id="equ71"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 11: comoving-conformal coordinates ===
 
Express the FLRW metric in comoving coordinates and conformal time. Show that in the case $k=0$ it is conformally flat, i.e. it can be made flat (pseudo-Euclidean) by means of global stretching.
 
Express the FLRW metric in comoving coordinates and conformal time. Show that in the case $k=0$ it is conformally flat, i.e. it can be made flat (pseudo-Euclidean) by means of global stretching.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 252: Line 263:
 
and it follows that $g_{\mu \nu } = a^2(\eta )\eta _{\mu \nu }$, where $\eta _{\mu \nu }$ is the Minkowski metric.</p>
 
and it follows that $g_{\mu \nu } = a^2(\eta )\eta _{\mu \nu }$, where $\eta _{\mu \nu }$ is the Minkowski metric.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ66n"></div>
+
 
=== Problem 12. ===
+
<div id=""></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 12: proper coordinates ===
 +
Express the FLRW metric in proper coordinates.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">
 +
\begin{align}
 +
ds^2&  = dt^2  - a^2 (t)\left( {dr^2  + r^2 d\Omega ^2 } \right), \\
 +
d\Omega ^2  &= d\theta ^2  + \sin ^2 \theta d\phi ^2 ; \\
 +
R &= a(t)r, \\
 +
dR &= \dot ardt + adr, \\
 +
dr &= \frac{1}{a}\left( {dR - HRdt} \right); \\
 +
\end{align}
 +
\[ds^2  = \left[ {1 - R^2 H^2 (t)} \right]dt^2  + 2RH(t)dRdt - dR^2  - R^2 d\Omega ^2 .\]
 +
</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
 
 +
<div id="equ66n"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
 
 +
=== Problem 13: conformal time algebra ===
 
Consider an arbitrary function of time $f(t)$ and express $\dot{f}$ and $\ddot{f}$ in terms of derivatives with respect to conformal time.
 
Consider an arbitrary function of time $f(t)$ and express $\dot{f}$ and $\ddot{f}$ in terms of derivatives with respect to conformal time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 271: Line 306:
 
is the Hubble' constant in conformal time.</p>
 
is the Hubble' constant in conformal time.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ65"></div>
+
 
=== Problem 13. ===
+
<div id="equ65"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 14: photon's geodesics in flat case===
 
Obtain the equation of a photon's  worldline in terms of conformal time for the case of the isotropic and spatially flat Universe.
 
Obtain the equation of a photon's  worldline in terms of conformal time for the case of the isotropic and spatially flat Universe.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">A worldline of a photon is defined by  equation $d{s^2} =0$. It is sufficient to consider only radial trajectories with the observer in the origin of coordinate frame. Using the metrics (\ref{FLRWconformal}), IT
+
     <p style="text-align: left;">A worldline of a photon is defined by  equation $d{s^2} =0$. It is sufficient to consider only radial trajectories with the observer in the origin of coordinate frame. Using the metric (\ref{FLRWconformal}), one obtains
one obtains
+
 
\[\chi =\pm\eta +const.\]</p>
 
\[\chi =\pm\eta +const.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
<div id="equGeo1"></div>
+
<div id="equGeo1"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 14. ===
+
=== Problem 15: photon's geodesics in general case (!) ===
 
Derive the equations of geodesics in terms of conformal time and comoving coordinates for the case of radial motion in the FLRW metric.
 
Derive the equations of geodesics in terms of conformal time and comoving coordinates for the case of radial motion in the FLRW metric.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">Consider the FLRW metrics in  coordinates $(\eta,\chi,\theta,\varphi)$ (\ref{FLRWconformal}). In the case of radial motion $u^{\theta}=u^{\varphi}=0$, so one needs only the components of connection with the indices equal to $\eta$ and $\chi$. They are evaluated using the explicit formula in terms of the metrics ([[Equations_of_General_Relativity#GammaChristoffel|see eq.]]). The non-zero components are the following:
+
     <p style="text-align: left;">Consider the FLRW metrics in  coordinates $(\eta,\chi,\theta,\varphi)$ (\ref{FLRWconformal}). In the case of radial motion $u^{\theta}=u^{\varphi}=0$, so one needs only the components of connection with the indices equal to $\eta$ and $\chi$. They are evaluated using the [[Equations_of_General_Relativity#GammaChristoffel|explicit formula in terms of the metric]]. The non-zero components are the following:
 
\[{\Gamma^{\eta}}_{\eta\eta}
 
\[{\Gamma^{\eta}}_{\eta\eta}
 
={\Gamma^{\eta}}_{\chi\chi}
 
={\Gamma^{\eta}}_{\chi\chi}
Line 346: Line 382:
 
It is easy to see that for photons with $\epsilon^{2}=0$ and $u^{\chi}=\pm u^{\eta}$ the two equations coinside. The particles's momenta, both for massive and massless ones, are always conserved in coordinates $(\eta,\chi)$ (for massive particles $p_{\chi}=mc u_{\chi}$, for photons $k_{\chi}\sim u_{\chi}$). It is as it ought to be, as the FLRW metric is spatially homogeneous. It means that the photon's energy is conserved as well, but in the case of massive particles the Hubble's constant serves as a source of energy. It should be stressed that, though the obtained result is obviously physically meaningful, $u_{\eta}$ and $u_{\chi}$ are not the energy and momentum as measured by a comoving observer. Regarding this see  the next problem.</p>
 
It is easy to see that for photons with $\epsilon^{2}=0$ and $u^{\chi}=\pm u^{\eta}$ the two equations coinside. The particles's momenta, both for massive and massless ones, are always conserved in coordinates $(\eta,\chi)$ (for massive particles $p_{\chi}=mc u_{\chi}$, for photons $k_{\chi}\sim u_{\chi}$). It is as it ought to be, as the FLRW metric is spatially homogeneous. It means that the photon's energy is conserved as well, but in the case of massive particles the Hubble's constant serves as a source of energy. It should be stressed that, though the obtained result is obviously physically meaningful, $u_{\eta}$ and $u_{\chi}$ are not the energy and momentum as measured by a comoving observer. Regarding this see  the next problem.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equGeo2"></div>
 
  
=== Problem 15. ===
+
<div id="equGeo2"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 16: cosmological redshift (!) ===
 
A comoving observer is the one that is at rest in the comoving coordinates. He sees the Universe as isotropic, and can also be called an isotropic observer. Show that the frequency of a photon and velocity of a free particle, as measured by a comoving observer$^*$ at time $t$, are proportional to $1/a(t)$.
 
A comoving observer is the one that is at rest in the comoving coordinates. He sees the Universe as isotropic, and can also be called an isotropic observer. Show that the frequency of a photon and velocity of a free particle, as measured by a comoving observer$^*$ at time $t$, are proportional to $1/a(t)$.
  
Line 372: Line 408:
 
=a^{2}(\tilde{u}^{\eta})^{2}.\]
 
=a^{2}(\tilde{u}^{\eta})^{2}.\]
  
The photon's frequency measured by this observer equals to ([[Equations_of_General_Relativity#equ_oto1a|see problem]])
+
The photon's frequency measured by this observer [[Equations_of_General_Relativity#equ_oto1a|equals to]]
 
\[\omega_{ph}=k_{\mu}\tilde{u}^{\mu}
 
\[\omega_{ph}=k_{\mu}\tilde{u}^{\mu}
 
=k_{\eta}\tilde{u}^{\eta}
 
=k_{\eta}\tilde{u}^{\eta}
Line 392: Line 428:
 
=\frac{\pi_0}{\sqrt{\pi_0^2+a^{2}}}.\]</p>
 
=\frac{\pi_0}{\sqrt{\pi_0^2+a^{2}}}.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ70"></div>
 
  
=== Problem 16. ===
+
<div id="equ70"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 17: redshift and emission time ===
 
Express the detected redshift of a photon as a function of the cosmic time $t$ at the moment of its emission and vice versa: express the time $t$ and conformal time $\eta$ at the moment of its emission in terms of its registered redshift.
 
Express the detected redshift of a photon as a function of the cosmic time $t$ at the moment of its emission and vice versa: express the time $t$ and conformal time $\eta$ at the moment of its emission in terms of its registered redshift.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 425: Line 461:
 
The integration constant is chosen so that $z\to\infty$ for $t\to0$. Thus the history of the Universe in the cosmic and conformal times is expressed in terms of redshift.</p>
 
The integration constant is chosen so that $z\to\infty$ for $t\to0$. Thus the history of the Universe in the cosmic and conformal times is expressed in terms of redshift.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ69"></div>
+
<div id="equ69"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 17. ===
+
=== Problem 18: scale factor and conformal time ===
 
Obtain the relation between the scale factor and conformal time using the properties of conformal time interval.
 
Obtain the relation between the scale factor and conformal time using the properties of conformal time interval.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">As the comoving distance between the source and observer does not change, the conformal time interval between two light signals at the point of emission coincides with that at the point of detection ([[#equ65|see problem]]). Using the definition of conformal time $dt=a(\eta)d\eta$, one obtains
+
     <p style="text-align: left;">As the comoving distance between the source and observer does not change, the conformal time interval between two light signals at the point of emission [[#equ65|coincides with that at the point of detection]]. Using the definition of conformal time $dt=a(\eta)d\eta$, one obtains
 
\[\left. \frac{\Delta t}{a} \right|_{emit}
 
\[\left. \frac{\Delta t}{a} \right|_{emit}
 
= \left. \frac{\Delta t}{a}\right|_{obs}.\]
 
= \left. \frac{\Delta t}{a}\right|_{obs}.\]
Line 442: Line 478:
 
After substitution into the definition (\ref{RedshiftDefinition}), one has again $a(z) = \frac{1}{1 + z}$.</p>
 
After substitution into the definition (\ref{RedshiftDefinition}), one has again $a(z) = \frac{1}{1 + z}$.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ72"></div>
 
  
=== Problem 18. ===
+
<div id="equ72"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 19: closed and open universes ===
 
Is it possible for an open Universe to evolve into a closed one or vice versa?
 
Is it possible for an open Universe to evolve into a closed one or vice versa?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 454: Line 490:
 
     <p style="text-align: left;">No.</p>
 
     <p style="text-align: left;">No.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ27"></div>
+
 
=== Problem 19. ===
+
<div id="equ27"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 20: Christoffel symbols for FLRW metric ===
 
Calculate all connection coefficients (Christoffel symbols) for the FLRW metric.
 
Calculate all connection coefficients (Christoffel symbols) for the FLRW metric.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">We use explicit expressions for ${\Gamma^{i}}_{kl}$ ([[Equations_of_General_Relativity#GammaChristoffel|see eq.]])
+
     <p style="text-align: left;">We use [[Equations_of_General_Relativity#GammaChristoffel|explicit expressions]]  for ${\Gamma^{i}}_{kl}$
\[\Gamma _{\alpha \beta }^{\mu }= \frac{1}{2}g^{\mu \nu }\left[
+
\begin{equation}\label{GammaGen}
\frac{\partial g_{\alpha \nu }}{\partial x^{\beta }}+\frac{\partial g_{\beta \nu }}{\partial x^{\alpha }}-\frac{\partial g_{\alpha \beta }}{\partial x^{\nu }} \right].\]
+
\Gamma _{\alpha \beta }^{\mu }= \frac{1}{2}g^{\mu \nu }\left[
 +
\frac{\partial g_{\alpha \nu }}{\partial x^{\beta }}+\frac{\partial g_{\beta \nu }}{\partial x^{\alpha }}-\frac{\partial g_{\alpha \beta }}{\partial x^{\nu }} \right].
 +
\end{equation}
 
Here we use Greek alphabet for spacetime indices $\alpha,\beta,\nu=0,1,2,3$ and Latin for spatial indices $i,j=1,2,3$.
 
Here we use Greek alphabet for spacetime indices $\alpha,\beta,\nu=0,1,2,3$ and Latin for spatial indices $i,j=1,2,3$.
  
Line 492: Line 531:
 
\quad g^{00}=1,
 
\quad g^{00}=1,
 
\quad g^{ij}=-\frac{1}{a^2(t)}{\gamma^{ij}}.\]
 
\quad g^{ij}=-\frac{1}{a^2(t)}{\gamma^{ij}}.\]
Using again the expression ([[Equations_of_General_Relativity#GammaChristoffel|see eq.]]), for the non-zero Christoffel symbols we obtain
+
Using again the expression (\ref{GammaGen}), for the non-zero Christoffel symbols we obtain
 
\[ \Gamma _{0j}^{i}
 
\[ \Gamma _{0j}^{i}
 
=\frac{1}{2}g^{ik}\frac{\partial g_{jk}}{\partial t}
 
=\frac{1}{2}g^{ik}\frac{\partial g_{jk}}{\partial t}
 
= \frac{\dot{a}}{a}\delta_{ij};
 
= \frac{\dot{a}}{a}\delta_{ij};
 
\quad\Gamma _{ij}^0=a\dot{a}{\gamma _{ij}}.\]
 
\quad\Gamma _{ij}^0=a\dot{a}{\gamma _{ij}}.\]
The symbols $\Gamma _{jk}^{i}$ are calculated with the help of ([[Equations_of_General_Relativity#GammaChristoffel|see eq.]]), where instead of the metric tensor $g^{\mu\nu}$ one uses the three-dimensional metric $\gamma_{ij}$. Therefore all the non-zero Christoffel symbols generated by the FLRW-metric are
+
The symbols $\Gamma _{jk}^{i}$ are calculated also with the help of (\ref{GammaGen}), where instead of the metric tensor $g^{\mu\nu}$ one uses the three-dimensional metric $\gamma_{ij}$. Therefore all the non-zero Christoffel symbols generated by the FLRW-metric are
 
\begin{align*}
 
\begin{align*}
 
&\Gamma _{11}^{0}=\frac{a\dot{a}}{1-k{{r}^{2}}};\quad
 
&\Gamma _{11}^{0}=\frac{a\dot{a}}{1-k{{r}^{2}}};\quad
Line 504: Line 543:
 
&\Gamma_{10}^1=\Gamma _{01}^1 =\frac{\dot a}{a};
 
&\Gamma_{10}^1=\Gamma _{01}^1 =\frac{\dot a}{a};
 
\quad
 
\quad
\Gamma _{11}^1 =-\frac{kr}{1-kr^2};\quad
+
\Gamma _{11}^1 =\frac{kr}{1-kr^2};\quad
 
\Gamma _{22}^1=-r(1-kr^2);\quad
 
\Gamma _{22}^1=-r(1-kr^2);\quad
 
\Gamma _{33}^1=-r(1-kr^2)\sin^2\theta;\\
 
\Gamma _{33}^1=-r(1-kr^2)\sin^2\theta;\\
Line 515: Line 554:
 
\Gamma^{3}_{31}=\Gamma^{3}_{13}=\frac 1 r ;\quad
 
\Gamma^{3}_{31}=\Gamma^{3}_{13}=\frac 1 r ;\quad
 
\Gamma^{3}_{32}=\Gamma^{3}_{23}
 
\Gamma^{3}_{32}=\Gamma^{3}_{23}
=\coth\theta.
+
=\cot\theta.
 
\end{align*}</p>
 
\end{align*}</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
  
 
<div id="equ28"></div>
 
<div id="equ28"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 20. ===
+
=== Problem 21: Ricci tensor and scalar ===
 
Derive the components of Ricci tensor, scalar curvature and the trace of energy-momentum tensor for the FLRW metric.
 
Derive the components of Ricci tensor, scalar curvature and the trace of energy-momentum tensor for the FLRW metric.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 551: Line 592:
 
\end{align*}</p>
 
\end{align*}</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
 
<div id="equ28n"></div>
 
<div id="equ28n"></div>
 
+
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 21. ===
+
=== Problem 22: spatial curvature ===
 
Obtain the components of the Ricci tensor and scalar curvature ${}^{(3)}R$ of the spatial section $t=const$ of the FLRW metric. Show that $k=sign^{(3)}R$ if ${}^{(3)}R\neq 0$.
 
Obtain the components of the Ricci tensor and scalar curvature ${}^{(3)}R$ of the spatial section $t=const$ of the FLRW metric. Show that $k=sign^{(3)}R$ if ${}^{(3)}R\neq 0$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 574: Line 615:
 
The spatial curvature can be obtained from $R$ by formal substitution $g_{\alpha\beta}\to-g_{\alpha\beta}$ and $a=const$ (thus $R^{0}_{0}$ also turns to zero). The scalar spacetime curvature then equals to $R=-6k/a^2$. If one changes the sign of the metric, then $\Gamma_{ikl}$ changes its sign too, but ${\Gamma^{i}}_{kl}=g^{ij}\Gamma_{j,kl}$ does not, as well as the curvature tensor ${R^{i}}_{klm}$ and Ricci tensor $R_{km}={R^{i}}_{kim}$, but the scalar curvature $R=g^{km}R_{km}$ changes its sign again. Then the spatial curvature equals to ${}^{(3)}R=6k/a^{2}$, and thus $k$ coincides with its sign.</p>
 
The spatial curvature can be obtained from $R$ by formal substitution $g_{\alpha\beta}\to-g_{\alpha\beta}$ and $a=const$ (thus $R^{0}_{0}$ also turns to zero). The scalar spacetime curvature then equals to $R=-6k/a^2$. If one changes the sign of the metric, then $\Gamma_{ikl}$ changes its sign too, but ${\Gamma^{i}}_{kl}=g^{ij}\Gamma_{j,kl}$ does not, as well as the curvature tensor ${R^{i}}_{klm}$ and Ricci tensor $R_{km}={R^{i}}_{kim}$, but the scalar curvature $R=g^{km}R_{km}$ changes its sign again. Then the spatial curvature equals to ${}^{(3)}R=6k/a^{2}$, and thus $k$ coincides with its sign.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
<div id="equ29n"></div>
+
 
=== Problem 22. ===
+
<div id="equ29n"></div><div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 23: cosmological energy-momentum tensor ===
 
Derive the components and trace of the energy-momentum tensor which satisfies the cosmological principle.
 
Derive the components and trace of the energy-momentum tensor which satisfies the cosmological principle.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 603: Line 645:
 
\end{equation}
 
\end{equation}
 
in the comoving frame it will coincide with the energy-momentum tensor (\ref{2_equ29n}). As both quantities transform as tensors, they coincide in any other frame.
 
in the comoving frame it will coincide with the energy-momentum tensor (\ref{2_equ29n}). As both quantities transform as tensors, they coincide in any other frame.
 
+
<br/>
The simplest way to generalize the expression (\ref{1_equ29n}) for the case of curved space is to replace the Minkowski space metric $\eta^{\mu\nu}$ by an arbitrary one $g^{\mu\nu} $. Indeed, for any given point of the spacetime there exists a locally Lorentzian  reference frame ([[Equations_of_General_Relativity#equ_oto3|see problem]]), in which the metric tensor locally coincides with the Minkowski tensor, and the energy-momentum tensor for matter takes the form (\ref{2_equ29n}). After transition to arbitrary reference frame one arrives to:
+
The simplest way to generalize the expression (\ref{1_equ29n}) for the case of curved space is to replace the Minkowski space metric $\eta^{\mu\nu}$ by an arbitrary one $g^{\mu\nu} $. Indeed, for any given point of the spacetime there [[Equations_of_General_Relativity#equ_oto3|exists a locally Lorentzian  reference frame]], in which the metric tensor locally coincides with the Minkowski tensor, and the energy-momentum tensor for matter takes the form (\ref{2_equ29n}). After transition to arbitrary reference frame one arrives to:
 
\begin{equation}
 
\begin{equation}
 
   T^{\mu\nu}= (\rho+p)u^\mu u^\nu - pg^{\mu\nu} . \label{3_equ29n}
 
   T^{\mu\nu}= (\rho+p)u^\mu u^\nu - pg^{\mu\nu} . \label{3_equ29n}
 
\end{equation}
 
\end{equation}
It is worth noting that in general the expression (\ref{3_equ29n}) is valid only in the case of weak gravity;  otherwise the expression for the energy-momentum tensor may contain additional terms depending on the curvature tensor.
+
It is worth noting that in general the expression (\ref{3_equ29n}) is valid only in the case of weak gravity;  otherwise the expression for the energy-momentum tensor may contain additional terms depending on the curvature tensor.<br/>
  
 
Note also that the simplest way to present explicitly the components of energy-momentum tensor (\ref{3_equ29n}) is the following
 
Note also that the simplest way to present explicitly the components of energy-momentum tensor (\ref{3_equ29n}) is the following
Line 629: Line 671:
 
\[T\equiv T_\mu ^\mu = \rho - 3p.\]</p>
 
\[T\equiv T_\mu ^\mu = \rho - 3p.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>

Latest revision as of 16:46, 3 February 2015

Problem 1: expanding baloon

Consider two points $A$ and $B$ on a two-dimensional sphere with radius $a(t)$ depending on time. Find the distance between the points $r_{AB}$, as measured along the surface of the sphere, and their relative velocity $v_{AB}={dr_{AB}}/{dt}$.


Problem 2: scale factor and Hubble's parameter

The comoving reference frame is defined so that matter is at rest in it, and the distance $\chi_{AB}$ between any two points $A$ and $B$ is constant. Show that in a homogeneous and isotropic Universe the proper (physical) distance $r_{AB}$ between two points is related to the comoving one as \[r_{AB}=a(t)\cdot \chi_{AB},\] where quantity $a$ is called the scale factor and it can depend on time only. Integrate the Hubble's law and find $a(t)$.


Problem 3: FLRW metric

Consider a spacetime with homogeneous and isotropic spatial section of constant time $dt=0$. Show that in the comoving coordinates its metric necessarily has the form of the Friedman-Lemaître-Robertson-Walker (FLRW)$^*$ metric: \begin{equation}\label{FLRW1} ds^2=dt^2-a^2(t) \left\{ d\chi^2+\Sigma^2(\chi) (d\theta^2+\sin^2\theta d\varphi^2)\right\}, \end{equation} where \[\Sigma^2(\chi)= \left\{\begin{array}{lcl} \sin^2\chi \\%\qquad \; \; k=+1\\ \chi^2 \\%\qquad \qquad k=0\\ \sinh^2 \chi. \\%\qquad k=-1,\\ \end{array}\right.\] The time coordinate $t$, which is the proper time for the comoving matter, is referred to as cosmic (or cosmological) time.

$^*$Depending on geographical or historical preferences, named after a subset of the four scientists: Alexander Friedman (also spelled Friedmann), Georges Lemaître, Howard Percy Robertson and Arthur Geoffrey Walker. Thus abbreviations FRW, RW or FL are also used.


Problem 4: another representation

Show that the FLRW metric (\ref{FLRW1}) can be presented in the form \begin{equation}\label{FLRW2} ds^2=dt^2-a^2(t) \left\{ \frac{dr^2}{1-kr^2}+r^2 (d\theta^2+\sin^2\theta d\varphi^2) \right\}, \end{equation} where $k=0,\pm1$ is the sign of spatial curvature.


Problem 5: sign of spatial curvature

Show that only the sign of spatial curvature has physical meaning, as renormalization of the scale factor rescales the curvature.


Problem 6: spatially flat Universe

Why is the normalization of the scale factor not fixed for a spatially flat Universe, for which $k=0$?


Problem 7: geometry of the closed Universe

Consider a closed Universe (with $k=+1$) and find the length of equator and full volume of its spatial section $dt=0$.


Problem 8: electric charge of the Universe

Present arguments in favor of the affirmation that the electric charge of a closed Universe should be exactly zero.


Problem 9: Hubble's law

Using the FLRW metric, derive the Hubble's law.


Problem 10: conformal time

Conformal time $\eta$ is defined as \[dt=a(\eta)d\eta.\] It can be interpreted as the time measured by a clock that decelerates along with the expansion of the Universe. Rewrite the FLRW metric in conformal time. Show that the logarithmic derivative of the scale factor with respect to conformal time determines its evolution in the physical time.


Problem 11: comoving-conformal coordinates

Express the FLRW metric in comoving coordinates and conformal time. Show that in the case $k=0$ it is conformally flat, i.e. it can be made flat (pseudo-Euclidean) by means of global stretching.


Problem 12: proper coordinates

Express the FLRW metric in proper coordinates.



Problem 13: conformal time algebra

Consider an arbitrary function of time $f(t)$ and express $\dot{f}$ and $\ddot{f}$ in terms of derivatives with respect to conformal time.


Problem 14: photon's geodesics in flat case

Obtain the equation of a photon's worldline in terms of conformal time for the case of the isotropic and spatially flat Universe.


Problem 15: photon's geodesics in general case (!)

Derive the equations of geodesics in terms of conformal time and comoving coordinates for the case of radial motion in the FLRW metric.


Problem 16: cosmological redshift (!)

A comoving observer is the one that is at rest in the comoving coordinates. He sees the Universe as isotropic, and can also be called an isotropic observer. Show that the frequency of a photon and velocity of a free particle, as measured by a comoving observer$^*$ at time $t$, are proportional to $1/a(t)$.

$^*$We will refer to these quantities as to the "physical" energy and momentum of a particle, to stress that they are the ones directly measured in the most natural way.


Problem 17: redshift and emission time

Express the detected redshift of a photon as a function of the cosmic time $t$ at the moment of its emission and vice versa: express the time $t$ and conformal time $\eta$ at the moment of its emission in terms of its registered redshift.


Problem 18: scale factor and conformal time

Obtain the relation between the scale factor and conformal time using the properties of conformal time interval.


Problem 19: closed and open universes

Is it possible for an open Universe to evolve into a closed one or vice versa?


Problem 20: Christoffel symbols for FLRW metric

Calculate all connection coefficients (Christoffel symbols) for the FLRW metric.


Problem 21: Ricci tensor and scalar

Derive the components of Ricci tensor, scalar curvature and the trace of energy-momentum tensor for the FLRW metric.


Problem 22: spatial curvature

Obtain the components of the Ricci tensor and scalar curvature ${}^{(3)}R$ of the spatial section $t=const$ of the FLRW metric. Show that $k=sign^{(3)}R$ if ${}^{(3)}R\neq 0$.


Problem 23: cosmological energy-momentum tensor

Derive the components and trace of the energy-momentum tensor which satisfies the cosmological principle.