Difference between revisions of "Friedman-Lemaitre-Robertson-Walker (FLRW) metric"

From Universe in Problems
Jump to: navigation, search
(Problem 2.)
Line 1: Line 1:
 
[[Category:Dynamics of the Expanding Universe|3]]
 
[[Category:Dynamics of the Expanding Universe|3]]
__NOTOC__
+
== Friedman-Lemaitre-Robertson-Walker (FLRW) metric ==
 +
__TOC__
 
<div id="equ16"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ16"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1. ===
+
=== Problem 1: expanding baloon ===
 
Consider two points $A$ and $B$ on a two-dimensional sphere with radius $a(t)$ depending on time. Find the distance between the points $r_{AB}$, as measured along the surface of the sphere, and their relative velocity $v_{AB}={dr_{AB}}/{dt}$.
 
Consider two points $A$ and $B$ on a two-dimensional sphere with radius $a(t)$ depending on time. Find the distance between the points $r_{AB}$, as measured along the surface of the sphere, and their relative velocity $v_{AB}={dr_{AB}}/{dt}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 17: Line 18:
  
 
<div id="equ17"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ17"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2. ===
+
=== Problem 2: scale factor and Hubble's parameter ===
 
The comoving reference frame is defined so that matter is at rest in it, and the distance $\chi_{AB}$ between any two points $A$ and $B$ is constant. Show that in a homogeneous and isotropic Universe the proper (physical) distance $r_{AB}$ between two points is
 
The comoving reference frame is defined so that matter is at rest in it, and the distance $\chi_{AB}$ between any two points $A$ and $B$ is constant. Show that in a homogeneous and isotropic Universe the proper (physical) distance $r_{AB}$ between two points is
 
related to the comoving one as
 
related to the comoving one as
Line 42: Line 43:
 
<div id="equ21"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ21"></div><div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 3. ===
+
=== Problem 3: FLRW metric ===
 
Consider a spacetime with  homogeneous and isotropic spatial section of constant time $dt=0$. Show that in the comoving coordinates its metric necessarily has the form of the Friedman-Lemaitre-Robertson-Walker (FLRW)$^*$ metric:
 
Consider a spacetime with  homogeneous and isotropic spatial section of constant time $dt=0$. Show that in the comoving coordinates its metric necessarily has the form of the Friedman-Lemaitre-Robertson-Walker (FLRW)$^*$ metric:
 
\begin{equation}\label{FLRW1}
 
\begin{equation}\label{FLRW1}
Line 99: Line 100:
  
 
<div id="equ20"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ20"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 4. ===
+
=== Problem 4: another representation ===
 
Show that the FLRW metric (\ref{FLRW1}) can be presented in the form
 
Show that the FLRW metric (\ref{FLRW1}) can be presented in the form
 
\begin{equation}\label{FLRW2}
 
\begin{equation}\label{FLRW2}
Line 139: Line 140:
  
 
<div id="equ57"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ57"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 5. ===
+
=== Problem 5: spatial curvature ===
 
Show that only the sign of spatial curvature has physical meaning, as renormalization of the scale factor rescales the curvature.
 
Show that only the sign of spatial curvature has physical meaning, as renormalization of the scale factor rescales the curvature.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 155: Line 156:
  
 
<div id="equ56"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ56"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 6. ===
+
=== Problem 6: spatially flat Universe ===
 
Why is the normalization of the scale factor not fixed for a spatially flat Universe, for which $k=0$?
 
Why is the normalization of the scale factor not fixed for a spatially flat Universe, for which $k=0$?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 167: Line 168:
  
 
<div id="equ22"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ22"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 7. ===
+
=== Problem 7: geometry of the closed Universe ===
 
Consider a closed Universe (with $k=+1$) and find the length of equator and full volume of its spatial section $dt=0$.
 
Consider a closed Universe (with $k=+1$) and find the length of equator and full volume of its spatial section $dt=0$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 194: Line 195:
  
 
<div id="equ23"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ23"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 8. ===
+
=== Problem 8: electric charge of the Universe ===
 
Present arguments in favor of the affirmation that the electric charge of a closed Universe should be exactly zero.
 
Present arguments in favor of the affirmation that the electric charge of a closed Universe should be exactly zero.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 208: Line 209:
  
 
<div id="equ24"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ24"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 9. ===
+
=== Problem 9: Hubble's law ===
 
Using the FLRW metric, derive the Hubble's law.
 
Using the FLRW metric, derive the Hubble's law.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 247: Line 248:
  
 
<div id="equ71"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ71"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 11. ===
+
=== Problem 11: comoving-conformal coordinates ===
 
Express the FLRW metric in comoving coordinates and conformal time. Show that in the case $k=0$ it is conformally flat, i.e. it can be made flat (pseudo-Euclidean) by means of global stretching.
 
Express the FLRW metric in comoving coordinates and conformal time. Show that in the case $k=0$ it is conformally flat, i.e. it can be made flat (pseudo-Euclidean) by means of global stretching.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 264: Line 265:
  
 
<div id="equ66n"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ66n"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 12. ===
+
=== Problem 12: conformal time algebra ===
 
Consider an arbitrary function of time $f(t)$ and express $\dot{f}$ and $\ddot{f}$ in terms of derivatives with respect to conformal time.
 
Consider an arbitrary function of time $f(t)$ and express $\dot{f}$ and $\ddot{f}$ in terms of derivatives with respect to conformal time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 284: Line 285:
  
 
<div id="equ65"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ65"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 13. ===
+
=== Problem 13: photon's geodesics in flat case===
 
Obtain the equation of a photon's  worldline in terms of conformal time for the case of the isotropic and spatially flat Universe.
 
Obtain the equation of a photon's  worldline in terms of conformal time for the case of the isotropic and spatially flat Universe.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 298: Line 299:
  
 
<div id="equGeo1"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equGeo1"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 14. ===
+
=== Problem 14: photon geodesics in general case ===
 
Derive the equations of geodesics in terms of conformal time and comoving coordinates for the case of radial motion in the FLRW metric.
 
Derive the equations of geodesics in terms of conformal time and comoving coordinates for the case of radial motion in the FLRW metric.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 361: Line 362:
  
 
<div id="equGeo2"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equGeo2"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 15. ===
+
=== Problem 15: cosmological redshift ===
 
A comoving observer is the one that is at rest in the comoving coordinates. He sees the Universe as isotropic, and can also be called an isotropic observer. Show that the frequency of a photon and velocity of a free particle, as measured by a comoving observer$^*$ at time $t$, are proportional to $1/a(t)$.
 
A comoving observer is the one that is at rest in the comoving coordinates. He sees the Universe as isotropic, and can also be called an isotropic observer. Show that the frequency of a photon and velocity of a free particle, as measured by a comoving observer$^*$ at time $t$, are proportional to $1/a(t)$.
  
Line 407: Line 408:
  
 
<div id="equ70"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ70"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 16. ===
+
=== Problem 16: redshift and emission time ===
 
Express the detected redshift of a photon as a function of the cosmic time $t$ at the moment of its emission and vice versa: express the time $t$ and conformal time $\eta$ at the moment of its emission in terms of its registered redshift.
 
Express the detected redshift of a photon as a function of the cosmic time $t$ at the moment of its emission and vice versa: express the time $t$ and conformal time $\eta$ at the moment of its emission in terms of its registered redshift.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 439: Line 440:
  
 
<div id="equ69"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ69"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 17. ===
+
=== Problem 17: scale factor and conformal time ===
 
Obtain the relation between the scale factor and conformal time using the properties of conformal time interval.
 
Obtain the relation between the scale factor and conformal time using the properties of conformal time interval.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 457: Line 458:
  
 
<div id="equ72"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ72"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18. ===
+
=== Problem 18: closed and open universes ===
 
Is it possible for an open Universe to evolve into a closed one or vice versa?
 
Is it possible for an open Universe to evolve into a closed one or vice versa?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 469: Line 470:
  
 
<div id="equ27"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ27"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 19. ===
+
=== Problem 19: Christoffel symbols for FLRW metric ===
 
Calculate all connection coefficients (Christoffel symbols) for the FLRW metric.
 
Calculate all connection coefficients (Christoffel symbols) for the FLRW metric.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 536: Line 537:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 20. ===
+
=== Problem 20: Ricci tensor and scalar ===
 
Derive the components of Ricci tensor, scalar curvature and the trace of energy-momentum tensor for the FLRW metric.
 
Derive the components of Ricci tensor, scalar curvature and the trace of energy-momentum tensor for the FLRW metric.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 565: Line 566:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="equ28n"></div>
 
<div id="equ28n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 21. ===
+
=== Problem 21: spatial curvature ===
 
Obtain the components of the Ricci tensor and scalar curvature ${}^{(3)}R$ of the spatial section $t=const$ of the FLRW metric. Show that $k=sign^{(3)}R$ if ${}^{(3)}R\neq 0$.
 
Obtain the components of the Ricci tensor and scalar curvature ${}^{(3)}R$ of the spatial section $t=const$ of the FLRW metric. Show that $k=sign^{(3)}R$ if ${}^{(3)}R\neq 0$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 594: Line 594:
 
<div id="equ29n"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ29n"></div><div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 22. ===
+
=== Problem 22: cosmological energy-momentum tensor ===
 
Derive the components and trace of the energy-momentum tensor which satisfies the cosmological principle.
 
Derive the components and trace of the energy-momentum tensor which satisfies the cosmological principle.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">

Revision as of 20:29, 24 July 2012

Friedman-Lemaitre-Robertson-Walker (FLRW) metric

Problem 1: expanding baloon

Consider two points $A$ and $B$ on a two-dimensional sphere with radius $a(t)$ depending on time. Find the distance between the points $r_{AB}$, as measured along the surface of the sphere, and their relative velocity $v_{AB}={dr_{AB}}/{dt}$.


Problem 2: scale factor and Hubble's parameter

The comoving reference frame is defined so that matter is at rest in it, and the distance $\chi_{AB}$ between any two points $A$ and $B$ is constant. Show that in a homogeneous and isotropic Universe the proper (physical) distance $r_{AB}$ between two points is related to the comoving one as \[r_{AB}=a(t)\cdot \chi_{AB},\] where quantity $a$ is called the scale factor and it can depend on time only. Integrate the Hubble's law and find $a(t)$.


Problem 3: FLRW metric

Consider a spacetime with homogeneous and isotropic spatial section of constant time $dt=0$. Show that in the comoving coordinates its metric necessarily has the form of the Friedman-Lemaitre-Robertson-Walker (FLRW)$^*$ metric: \begin{equation}\label{FLRW1} ds^2=dt^2-a^2(t) \left\{ d\chi^2+\Sigma^2(\chi) (d\theta^2+\sin^2\theta d\varphi^2)\right\}, \end{equation} where \[\Sigma^2(\chi)= \left\{\begin{array}{lcl} \sin^2\chi \\%\qquad \; \; k=+1\\ \chi^2 \\%\qquad \qquad k=0\\ \sinh^2 \chi. \\%\qquad k=-1,\\ \end{array}\right.\] The time coordinate $t$, which is the proper time for the comoving matter, is referred to as cosmic (or cosmological) time.

$^*$Depending on geographical or historical preferences, named after a subset of the four scientists: Alexander Friedmann, Georges Lemaitre, Howard Percy Robertson and Arthur Geoffrey Walker. Thus abbreviations FRW, RW or FL are also used.


Problem 4: another representation

Show that the FLRW metric (\ref{FLRW1}) can be presented in the form \begin{equation}\label{FLRW2} ds^2=dt^2-a^2(t) \left\{ \frac{dr^2}{1-kr^2}+r^2 (d\theta^2+\sin^2\theta d\varphi^2) \right\}, \end{equation} where $k=0,\pm1$ is the sign of spatial curvature (see problem).


Problem 5: spatial curvature

Show that only the sign of spatial curvature has physical meaning, as renormalization of the scale factor rescales the curvature.


Problem 6: spatially flat Universe

Why is the normalization of the scale factor not fixed for a spatially flat Universe, for which $k=0$?


Problem 7: geometry of the closed Universe

Consider a closed Universe (with $k=+1$) and find the length of equator and full volume of its spatial section $dt=0$.


Problem 8: electric charge of the Universe

Present arguments in favor of the affirmation that the electric charge of a closed Universe should be exactly zero.


Problem 9: Hubble's law

Using the FLRW metric, derive the Hubble's law.


Problem 10.

Conformal time $\eta$ is defined as \[dt=a(\eta)d\eta.\] It can be interpreted as the time measured by a clock that decelerates along with the expansion of the Universe. Rewrite the FLRW metric in conformal time. Show that the logarithmic derivative of the scale factor with respect to conformal time determines its evolution in the physical time.


Problem 11: comoving-conformal coordinates

Express the FLRW metric in comoving coordinates and conformal time. Show that in the case $k=0$ it is conformally flat, i.e. it can be made flat (pseudo-Euclidean) by means of global stretching.


Problem 12: conformal time algebra

Consider an arbitrary function of time $f(t)$ and express $\dot{f}$ and $\ddot{f}$ in terms of derivatives with respect to conformal time.


Problem 13: photon's geodesics in flat case

Obtain the equation of a photon's worldline in terms of conformal time for the case of the isotropic and spatially flat Universe.


Problem 14: photon geodesics in general case

Derive the equations of geodesics in terms of conformal time and comoving coordinates for the case of radial motion in the FLRW metric.


Problem 15: cosmological redshift

A comoving observer is the one that is at rest in the comoving coordinates. He sees the Universe as isotropic, and can also be called an isotropic observer. Show that the frequency of a photon and velocity of a free particle, as measured by a comoving observer$^*$ at time $t$, are proportional to $1/a(t)$.

$^*$We will refer to these quantities as to the "physical" energy and momentum of a particle, to stress that they are the ones directly measured in the most natural way.


Problem 16: redshift and emission time

Express the detected redshift of a photon as a function of the cosmic time $t$ at the moment of its emission and vice versa: express the time $t$ and conformal time $\eta$ at the moment of its emission in terms of its registered redshift.


Problem 17: scale factor and conformal time

Obtain the relation between the scale factor and conformal time using the properties of conformal time interval.


Problem 18: closed and open universes

Is it possible for an open Universe to evolve into a closed one or vice versa?


Problem 19: Christoffel symbols for FLRW metric

Calculate all connection coefficients (Christoffel symbols) for the FLRW metric.


Problem 20: Ricci tensor and scalar

Derive the components of Ricci tensor, scalar curvature and the trace of energy-momentum tensor for the FLRW metric.


Problem 21: spatial curvature

Obtain the components of the Ricci tensor and scalar curvature ${}^{(3)}R$ of the spatial section $t=const$ of the FLRW metric. Show that $k=sign^{(3)}R$ if ${}^{(3)}R\neq 0$.


Problem 22: cosmological energy-momentum tensor

Derive the components and trace of the energy-momentum tensor which satisfies the cosmological principle.