Difference between revisions of "Friedman equations"

From Universe in Problems
Jump to: navigation, search
(Problem 22.)
Line 1: Line 1:
 
[[Category:Dynamics of the Expanding Universe|5]]
 
[[Category:Dynamics of the Expanding Universe|5]]
__NOTOC__
+
__TOC__
 
<div id="equ29"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ29"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1. ===
+
=== Problem 1: the derivation ===
 
Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric-the Friedman equations:
 
Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric-the Friedman equations:
 
\begin{align}\label{FriedmanEqI}
 
\begin{align}\label{FriedmanEqI}
Line 36: Line 36:
  
 
<div id="equ66"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ66"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2. ===
+
=== Problem 2: formulation in terms of conformal time ===
 
Derive the Friedman equations in terms of conformal time.
 
Derive the Friedman equations in terms of conformal time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 72: Line 72:
  
 
<div id="equ40"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ40"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 3. ===
+
=== Problem 3: relations ===
 
Show that the first Friedman equation is the first integral of the second one.
 
Show that the first Friedman equation is the first integral of the second one.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 84: Line 84:
  
 
<div id="equ53"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ53"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 4. ===
+
=== Problem 4: source of gravity in GR in the weak field limit ===
 
Show that in the weak field limit of General Relativity the source of gravity is the quantity $(\rho + 3p)$.
 
Show that in the weak field limit of General Relativity the source of gravity is the quantity $(\rho + 3p)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 120: Line 120:
  
 
<div id="equ54"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ54"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 5. ===
+
=== Problem 5: expansion and pressure ===
 
How does the magnitude of pressure affect the expansion rate?
 
How does the magnitude of pressure affect the expansion rate?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 132: Line 132:
  
 
<div id="equ41"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ41"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 6. ===
+
=== Problem 6: second equation for $k=0$ ===
 
Consider the case $k = 0$ and show that the second Friedman equation can be presented in the form
 
Consider the case $k = 0$ and show that the second Friedman equation can be presented in the form
 
\[HH' =  - 4\pi G\left(\rho  + p\right),\]
 
\[HH' =  - 4\pi G\left(\rho  + p\right),\]
Line 154: Line 154:
  
 
<div id="equ29nn"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ29nn"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 7. ===
+
=== Problem 7: Lorentz invariance ===
 
Are solutions of Friedman equations Lorentz-invariant?
 
Are solutions of Friedman equations Lorentz-invariant?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 166: Line 166:
  
 
<div id="equ31"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ31"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 8. ===
+
=== Problem 8: critical density ===
 
The critical density corresponds to the case of spatially-flat Universe $k=0$. Determine its actual value.
 
The critical density corresponds to the case of spatially-flat Universe $k=0$. Determine its actual value.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 184: Line 184:
 
<div id="equ33"></div>
 
<div id="equ33"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 9. ===
+
=== Problem 9: relative densities ===
 
Show that the first Friedman equation can be presented in the form
 
Show that the first Friedman equation can be presented in the form
 
\[\sum\limits_i\Omega_i=1,\]
 
\[\sum\limits_i\Omega_i=1,\]
Line 210: Line 210:
  
 
<div id="equ34n"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ34n"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 10. ===
+
=== Problem 10: scale factor via observables ===
 
Express the scale factor $a$ in a non-flat Universe through the Hubble's radius and total relative density $\rho/\rho_{cr}$.
 
Express the scale factor $a$ in a non-flat Universe through the Hubble's radius and total relative density $\rho/\rho_{cr}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 225: Line 225:
  
 
<div id="equ34"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ34"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 11. ===
+
=== Problem 11: Newtonian interpretation ===
 
Show that the relative curvature density $\rho_{curv}/\rho_{cr}$ in a given region can be interpreted as a measure of difference between the average potential and kinetic energies in the region.
 
Show that the relative curvature density $\rho_{curv}/\rho_{cr}$ in a given region can be interpreted as a measure of difference between the average potential and kinetic energies in the region.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 237: Line 237:
  
 
<div id="equ35"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ35"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 12. ===
+
=== Problem 12: $\dot H$ ===
 
Prove that in the case of spatially flat Universe
 
Prove that in the case of spatially flat Universe
 
\[\dot{H} = - 4\pi G (\rho + p).\]
 
\[\dot{H} = - 4\pi G (\rho + p).\]
Line 251: Line 251:
  
 
<div id="equ36"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ36"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 13. ===
+
=== Problem 13: Raychadhuri equation ===
 
Obtain the Raychadhuri equation
 
Obtain the Raychadhuri equation
 
\[H^2 + \dot H =  - \frac{4\pi G}{3}(\rho  + 3p).\]
 
\[H^2 + \dot H =  - \frac{4\pi G}{3}(\rho  + 3p).\]
Line 264: Line 264:
  
 
<div id="equ37"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ37"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 14. ===
+
=== Problem 14: conservation equation ===
 
Starting from the Friedman equations, obtain the conservation equation for matter in an expanding Universe:
 
Starting from the Friedman equations, obtain the conservation equation for matter in an expanding Universe:
 
\[\dot{\rho}+3H(\rho+p)=0.\]
 
\[\dot{\rho}+3H(\rho+p)=0.\]
Line 288: Line 288:
  
 
<div id="equ68"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ68"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 15. ===
+
=== Problem 15: conservation in terms of conformal time ===
 
Obtain the conservation equation in terms of the conformal time.
 
Obtain the conservation equation in terms of the conformal time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 302: Line 302:
  
 
<div id="equ38"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ38"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 16. ===
+
=== Problem 16: conservation equations for the expanding Universe ===
 
Starting from the energy momentum  conservation law $\nabla_{\mu}T^{\mu\nu}=0$, obtain the conservation equation for the expanding Universe.
 
Starting from the energy momentum  conservation law $\nabla_{\mu}T^{\mu\nu}=0$, obtain the conservation equation for the expanding Universe.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 323: Line 323:
  
 
<div id="equ46"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ46"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 17. ===
+
=== Problem 17: relations between the three equations ===
 
Show that among the three equations (two Friedman equations and the conservation equation) only two are independent, i.e. any of the three can be obtained from the two others.
 
Show that among the three equations (two Friedman equations and the conservation equation) only two are independent, i.e. any of the three can be obtained from the two others.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 346: Line 346:
  
 
<div id="equ_46e"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ_46e"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18. ===
+
=== Problem 18: e-foldings number ===
 
For a spatially flat Universe rewrite the Friedman equations in terms of the $e$-foldings number for the scale factor
 
For a spatially flat Universe rewrite the Friedman equations in terms of the $e$-foldings number for the scale factor
 
\[N(t)=\ln\frac{a(t)}{a_0}.\]
 
\[N(t)=\ln\frac{a(t)}{a_0}.\]
Line 365: Line 365:
  
 
<div id="equ47"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ47"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 19. ===
+
=== Problem 19: conservation in terms of e-foldings number ===
 
Express the conservation equation in terms of $N$ and find $\rho(N)$ for a substance with equation of state $p=w\rho$.
 
Express the conservation equation in terms of $N$ and find $\rho(N)$ for a substance with equation of state $p=w\rho$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 380: Line 380:
  
 
<div id="equ43"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ43"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 20. ===
+
=== Problem 20: pressure in terms of H ===
 
For the case of spatially flat Universe express pressure in terms of the Hubble parameter and its time derivative.
 
For the case of spatially flat Universe express pressure in terms of the Hubble parameter and its time derivative.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 397: Line 397:
  
 
<div id="equ44"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ44"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 21. ===
+
=== Problem 21: EoS parameter in terms of H ===
 
Express the state parameter $w = p/\rho$ in terms of the Hubble parameter and its time derivative.
 
Express the state parameter $w = p/\rho$ in terms of the Hubble parameter and its time derivative.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 411: Line 411:
  
 
<div id="equ_duality"></div><div style="border: 1px solid #AAA; padding:5px;">
 
<div id="equ_duality"></div><div style="border: 1px solid #AAA; padding:5px;">
=== Problem 22. ===
+
=== Problem 22: hidden symmetry ===
Show that for a spatially flat Universe the Friedman equations are invariant\footnote{V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. arXiv:1108.2102v1.} under the change of variables to a new scale factor
+
Show that for a spatially flat Universe the Friedman equations are invariant$^*$ under the change of variables to a new scale factor
 
\[a \to \alpha=\frac{1}{a}\]
 
\[a \to \alpha=\frac{1}{a}\]
and a the new equation of state:
+
and to the new equation of state:
 
\[(w+1)\to (\omega+1)=-(w+1).\]
 
\[(w+1)\to (\omega+1)=-(w+1).\]
 +
${}^{*}$V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. [http://arxiv.org/abs/1108.2102 arXiv:1108.2102v1]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>

Revision as of 09:32, 4 August 2012

Problem 1: the derivation

Starting from the Einstein equations, derive the equations for the scale factor $a(t)$ of the FLRW metric-the Friedman equations: \begin{align}\label{FriedmanEqI} \Big(\frac{\dot a}{a}\Big)^2& =\; \frac{8\pi G}{3}\rho -\frac{k}{a^2};\\ \label{FriedmanEqII} \frac{\ddot a}{a} &=- \frac{4\pi G}3\big(\rho+3p). \end{align} Consider matter an ideal fluid with $T^{\mu}_{\nu}=diag(\rho,-p,-p,-p)$ (see problem).


Problem 2: formulation in terms of conformal time

Derive the Friedman equations in terms of conformal time.


Problem 3: relations

Show that the first Friedman equation is the first integral of the second one.


Problem 4: source of gravity in GR in the weak field limit

Show that in the weak field limit of General Relativity the source of gravity is the quantity $(\rho + 3p)$.


Problem 5: expansion and pressure

How does the magnitude of pressure affect the expansion rate?


Problem 6: second equation for $k=0$

Consider the case $k = 0$ and show that the second Friedman equation can be presented in the form \[HH' = - 4\pi G\left(\rho + p\right),\] where $H' \equiv \frac{dH}{d\ln a}.$


Problem 7: Lorentz invariance

Are solutions of Friedman equations Lorentz-invariant?


Problem 8: critical density

The critical density corresponds to the case of spatially-flat Universe $k=0$. Determine its actual value.


Problem 9: relative densities

Show that the first Friedman equation can be presented in the form \[\sum\limits_i\Omega_i=1,\] where $\Omega_i$ are relative densities of the components, \[\Omega_i\equiv\frac{\rho_{i}}{\rho_{cr}}, \quad \rho_{cr}=\frac{3H^{2}}{8\pi G}, \quad \rho_{curv}=-\frac{3}{8\pi G}\frac{k}{a^2},\] and $\rho_{curv}$ describes the contribution to the total density of the spatial curvature.


Problem 10: scale factor via observables

Express the scale factor $a$ in a non-flat Universe through the Hubble's radius and total relative density $\rho/\rho_{cr}$.


Problem 11: Newtonian interpretation

Show that the relative curvature density $\rho_{curv}/\rho_{cr}$ in a given region can be interpreted as a measure of difference between the average potential and kinetic energies in the region.


Problem 12: $\dot H$

Prove that in the case of spatially flat Universe \[\dot{H} = - 4\pi G (\rho + p).\]


Problem 13: Raychadhuri equation

Obtain the Raychadhuri equation \[H^2 + \dot H = - \frac{4\pi G}{3}(\rho + 3p).\]


Problem 14: conservation equation

Starting from the Friedman equations, obtain the conservation equation for matter in an expanding Universe: \[\dot{\rho}+3H(\rho+p)=0.\] Show that it can be presented in the form \[\frac{d\ln\rho}{d\ln a}+3(1+w)=0,\] where $w=p/\rho$ is the state parameter for matter.


Problem 15: conservation in terms of conformal time

Obtain the conservation equation in terms of the conformal time.


Problem 16: conservation equations for the expanding Universe

Starting from the energy momentum conservation law $\nabla_{\mu}T^{\mu\nu}=0$, obtain the conservation equation for the expanding Universe.


Problem 17: relations between the three equations

Show that among the three equations (two Friedman equations and the conservation equation) only two are independent, i.e. any of the three can be obtained from the two others.


Problem 18: e-foldings number

For a spatially flat Universe rewrite the Friedman equations in terms of the $e$-foldings number for the scale factor \[N(t)=\ln\frac{a(t)}{a_0}.\]


Problem 19: conservation in terms of e-foldings number

Express the conservation equation in terms of $N$ and find $\rho(N)$ for a substance with equation of state $p=w\rho$.


Problem 20: pressure in terms of H

For the case of spatially flat Universe express pressure in terms of the Hubble parameter and its time derivative.



Problem 21: EoS parameter in terms of H

Express the state parameter $w = p/\rho$ in terms of the Hubble parameter and its time derivative.


Problem 22: hidden symmetry

Show that for a spatially flat Universe the Friedman equations are invariant$^*$ under the change of variables to a new scale factor \[a \to \alpha=\frac{1}{a}\] and to the new equation of state: \[(w+1)\to (\omega+1)=-(w+1).\] ${}^{*}$V. Faraoni. A symmetry of the spatially flat Friedmann equations with barotropic fluids. arXiv:1108.2102v1


Problem 23.

Evaluate the derivatives of the state parameter $w$ with respect to cosmological and conformal times.


Problem 24.

Consider an FLRW Universe dominated by a substance, such that Hubble parameter depends on time as $H=f(t)$, where $f(t)$ is an arbitrary differentiable function. Find the state equation for the considered substance.


Problem 25.

Find the upper bound for the state parameter $w$.


Problem 26.

Show that for non-relativistic particles the state parameter $w$ is much less unity.