Difference between revisions of "Introduction to relativistic theory of small perturbations"

From Universe in Problems
Jump to: navigation, search
Line 33: Line 33:
 
<div id="per12"></div>
 
<div id="per12"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 2 ===
 
<p style= "color: #999;font-size: 11px">problem id: per12</p>
 
<p style= "color: #999;font-size: 11px">problem id: per12</p>
 
Determine the dependence of density fluctuations on scale factor in the flat Universe when
 
Determine the dependence of density fluctuations on scale factor in the flat Universe when
Line 51: Line 51:
 
<div id="per13"></div>
 
<div id="per13"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 3 ===
 
<p style= "color: #999;font-size: 11px">problem id: per13</p>
 
<p style= "color: #999;font-size: 11px">problem id: per13</p>
 
Determine the dependence of density fluctuations on time in the closed Universe with $k=1$.
 
Determine the dependence of density fluctuations on time in the closed Universe with $k=1$.
Line 64: Line 64:
 
<div id="per14"></div>
 
<div id="per14"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 4 ===
 
<p style= "color: #999;font-size: 11px">problem id: per14</p>
 
<p style= "color: #999;font-size: 11px">problem id: per14</p>
 
Determine the dependence of density fluctuations on time in the open Universe with $k=-1$.
 
Determine the dependence of density fluctuations on time in the open Universe with $k=-1$.
Line 80: Line 80:
 
<div id="per18"></div>
 
<div id="per18"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 5 ===
 
<p style= "color: #999;font-size: 11px">problem id: per18</p>
 
<p style= "color: #999;font-size: 11px">problem id: per18</p>
 
The inhomogeneities in matter distribution in the Universe generate perturbations of different kinds. In linear approximation these perturbations do not interact with each other and evolve independently. Construct the classifications of perturbations.
 
The inhomogeneities in matter distribution in the Universe generate perturbations of different kinds. In linear approximation these perturbations do not interact with each other and evolve independently. Construct the classifications of perturbations.
Line 122: Line 122:
 
<div id="per19"></div>
 
<div id="per19"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 6 ===
 
<p style= "color: #999;font-size: 11px">problem id: per19</p>
 
<p style= "color: #999;font-size: 11px">problem id: per19</p>
 
Determine the number of independent functions required for description of perturbations, considered in the previous problem.
 
Determine the number of independent functions required for description of perturbations, considered in the previous problem.
Line 139: Line 139:
 
<div id="per20ntenzor"></div>
 
<div id="per20ntenzor"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 7 ===
 
<p style= "color: #999;font-size: 11px">problem id: per20ntenzor</p>
 
<p style= "color: #999;font-size: 11px">problem id: per20ntenzor</p>
 
Assuming, that in the Universe with metrics
 
Assuming, that in the Universe with metrics
Line 170: Line 170:
 
<div id="per21ntenzor"></div>
 
<div id="per21ntenzor"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 8 ===
 
<p style= "color: #999;font-size: 11px">problem id: per21ntenzor</p>
 
<p style= "color: #999;font-size: 11px">problem id: per21ntenzor</p>
 
Demonstrate, that spatial velocity $v^i$ from previous problem is physical.
 
Demonstrate, that spatial velocity $v^i$ from previous problem is physical.
Line 193: Line 193:
 
<div id="per22ntenzor"></div>
 
<div id="per22ntenzor"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 9 ===
 
<p style= "color: #999;font-size: 11px">problem id: per22ntenzor</p>
 
<p style= "color: #999;font-size: 11px">problem id: per22ntenzor</p>
 
Using the results of two previous problems, calculate the components of energy--momentum tensor perturbation $\delta T^\mu_\nu$, which is induced by the perturbations of density and pressure $$\widetilde{\rho}=\rho+\delta \rho, ~  \widetilde{p}=p+\delta p,$$ where $\rho,p$ are their background values.
 
Using the results of two previous problems, calculate the components of energy--momentum tensor perturbation $\delta T^\mu_\nu$, which is induced by the perturbations of density and pressure $$\widetilde{\rho}=\rho+\delta \rho, ~  \widetilde{p}=p+\delta p,$$ where $\rho,p$ are their background values.
Line 215: Line 215:
 
<div id="per23ntenzor"></div>
 
<div id="per23ntenzor"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 10 ===
 
<p style= "color: #999;font-size: 11px">problem id: per23ntenzor</p>
 
<p style= "color: #999;font-size: 11px">problem id: per23ntenzor</p>
 
Obtain the equations of covariant convervation in linear approximation in components of tensor perturbations $h_{\mu\nu}$. Use the gauge $h_{0i}=0$ for simplicity.
 
Obtain the equations of covariant convervation in linear approximation in components of tensor perturbations $h_{\mu\nu}$. Use the gauge $h_{0i}=0$ for simplicity.
Line 236: Line 236:
 
<div id="per20"></div>
 
<div id="per20"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 11 ===
 
<p style= "color: #999;font-size: 11px">problem id: per20</p>
 
<p style= "color: #999;font-size: 11px">problem id: per20</p>
 
In the first order of $h_{ik}$ calculate the components of energy--momentum tensor for the Universe. filled with ideal fluid with equation of state$p=w\rho$ and metrics \eqref{met_ten_per}
 
In the first order of $h_{ik}$ calculate the components of energy--momentum tensor for the Universe. filled with ideal fluid with equation of state$p=w\rho$ and metrics \eqref{met_ten_per}
Line 274: Line 274:
 
<div id="per21"></div>
 
<div id="per21"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 12 ===
 
<p style= "color: #999;font-size: 11px">problem id: per21</p>
 
<p style= "color: #999;font-size: 11px">problem id: per21</p>
 
In linear approximation determine the transformation of metrics $g_{\mu\nu}$, which is generated by the space transformation $x^\alpha\rightarrow \tilde{x}^\alpha=x^\alpha+\xi^\alpha$, where $\xi^\alpha$ is infinitesimal scalar function.
 
In linear approximation determine the transformation of metrics $g_{\mu\nu}$, which is generated by the space transformation $x^\alpha\rightarrow \tilde{x}^\alpha=x^\alpha+\xi^\alpha$, where $\xi^\alpha$ is infinitesimal scalar function.
Line 305: Line 305:
 
<div id="per22"></div>
 
<div id="per22"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 13 ===
 
<p style= "color: #999;font-size: 11px">problem id: per22</p>
 
<p style= "color: #999;font-size: 11px">problem id: per22</p>
 
Using the results of previous problem determine the transformation of metrics, generated by the transformation $x^\alpha\rightarrow \tilde{x}^\alpha=x^\alpha+\xi^\alpha$. Here the four--vector  $\xi^\alpha=(\xi^0,\xi^i)$ satisfies the condition $\xi^i=\xi^i_\bot+\zeta^i$, $\xi^i_\bot$ is a three--vector with zero divergence ($\xi^i_{\bot,i}=0$) and $\zeta^i$ is a scalar function.
 
Using the results of previous problem determine the transformation of metrics, generated by the transformation $x^\alpha\rightarrow \tilde{x}^\alpha=x^\alpha+\xi^\alpha$. Here the four--vector  $\xi^\alpha=(\xi^0,\xi^i)$ satisfies the condition $\xi^i=\xi^i_\bot+\zeta^i$, $\xi^i_\bot$ is a three--vector with zero divergence ($\xi^i_{\bot,i}=0$) and $\zeta^i$ is a scalar function.
Line 331: Line 331:
 
<div id="per22_1"></div>
 
<div id="per22_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 14 ===
 
<p style= "color: #999;font-size: 11px">problem id: per22_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: per22_1</p>
 
Demonstrate, that non--uniform flat Friedman metrics
 
Demonstrate, that non--uniform flat Friedman metrics

Revision as of 11:31, 18 February 2014


In the following section we consider only the linear in perturbations theory.

Perturbations on flat background

Problem 1

problem id: per15

Consider the stability of stationary Universe, filled with matter $(p=0)$ and by substance with $p = w\rho$.


Problem 2

problem id: per12

Determine the dependence of density fluctuations on scale factor in the flat Universe when
a) radiation,
b) matter
is dominating.


Problem 3

problem id: per13

Determine the dependence of density fluctuations on time in the closed Universe with $k=1$.


Problem 4

problem id: per14

Determine the dependence of density fluctuations on time in the open Universe with $k=-1$.


Metrics perturbations, coordinates transforms and perturbed energy--momentum tensor

Problem 5

problem id: per18

The inhomogeneities in matter distribution in the Universe generate perturbations of different kinds. In linear approximation these perturbations do not interact with each other and evolve independently. Construct the classifications of perturbations.


Problem 6

problem id: per19

Determine the number of independent functions required for description of perturbations, considered in the previous problem.


Problem 7

problem id: per20ntenzor

Assuming, that in the Universe with metrics \begin{equation}\label{met_ten_per} ds^2=dt^2-a^2(t)(\delta_{ik}-h_{ik})dx^idx^k\;(i,k=1,2,3), \end{equation} the four--velocity has the form $$u^0=\frac{1}{a}(1+\delta u^0),~u^i=\frac{1}{a} v^i,$$ determine the connection between components of four-velocity and metrics in linear approximation in perturbations. Consider $u^0$ and $v^i$ as first-order terms.


Problem 8

problem id: per21ntenzor

Demonstrate, that spatial velocity $v^i$ from previous problem is physical.


Problem 9

problem id: per22ntenzor

Using the results of two previous problems, calculate the components of energy--momentum tensor perturbation $\delta T^\mu_\nu$, which is induced by the perturbations of density and pressure $$\widetilde{\rho}=\rho+\delta \rho, ~ \widetilde{p}=p+\delta p,$$ where $\rho,p$ are their background values.


Problem 10

problem id: per23ntenzor

Obtain the equations of covariant convervation in linear approximation in components of tensor perturbations $h_{\mu\nu}$. Use the gauge $h_{0i}=0$ for simplicity.


Problem 11

problem id: per20

In the first order of $h_{ik}$ calculate the components of energy--momentum tensor for the Universe. filled with ideal fluid with equation of state$p=w\rho$ and metrics \eqref{met_ten_per}


Problem 12

problem id: per21

In linear approximation determine the transformation of metrics $g_{\mu\nu}$, which is generated by the space transformation $x^\alpha\rightarrow \tilde{x}^\alpha=x^\alpha+\xi^\alpha$, where $\xi^\alpha$ is infinitesimal scalar function.


Problem 13

problem id: per22

Using the results of previous problem determine the transformation of metrics, generated by the transformation $x^\alpha\rightarrow \tilde{x}^\alpha=x^\alpha+\xi^\alpha$. Here the four--vector $\xi^\alpha=(\xi^0,\xi^i)$ satisfies the condition $\xi^i=\xi^i_\bot+\zeta^i$, $\xi^i_\bot$ is a three--vector with zero divergence ($\xi^i_{\bot,i}=0$) and $\zeta^i$ is a scalar function.


Problem 14

problem id: per22_1

Demonstrate, that non--uniform flat Friedman metrics

 $$
  ds^2= \left(1-\frac{2}{\sqrt{\lambda}}\dot{f}(t,\vec{r})\right)dt^2-a^2(\delta_{ij}-2\mathcal{B}_{,ij})dx^idx^j,
  $$
    with arbitrary small function $f(t,\vec{r})$, can be trnsformed to the uniform one.