Difference between revisions of "Kerr black hole"

From Universe in Problems
Jump to: navigation, search
(General axially symmetric metric)
Line 24: Line 24:
  
 
<div id="BlackHole53"></div>
 
<div id="BlackHole53"></div>
=== Problem 1. ===
+
=== Problem 1: preliminary algebra ===
 
Find the components of metric tensor $g_{\mu\nu}$ and its inverse $g^{\mu\nu}$.
 
Find the components of metric tensor $g_{\mu\nu}$ and its inverse $g^{\mu\nu}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 64: Line 64:
  
 
<div id="BlackHole54"></div>
 
<div id="BlackHole54"></div>
=== Problem 2. ===
+
=== Problem 2: integrals of motion ===
 
Write down the integrals of motion corresponding to Killing vectors $\partial_t$ and $\partial_\varphi$.
 
Write down the integrals of motion corresponding to Killing vectors $\partial_t$ and $\partial_\varphi$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 72: Line 72:
 
A particle's integrals of motion are
 
A particle's integrals of motion are
 
\begin{equation}\label{AxiSimm-Integrals}
 
\begin{equation}\label{AxiSimm-Integrals}
\bm{u}\cdot\bm{\xi}_t=u_{t};
+
\mathbf{u}\cdot\mathbf{\xi}_t=u_{t};
 
\quad
 
\quad
\bm{u}\cdot\bm{\xi}_{\varphi}=u_{\varphi}.\end{equation}
+
\mathbf{u}\cdot\mathbf{\xi}_{\varphi}=u_{\varphi}.\end{equation}
 
Energy and angular momentum are defined the same way as in the Schwarzshild case
 
Energy and angular momentum are defined the same way as in the Schwarzshild case
 
\[E=mc^{2}u_{t};\qquad L=-m u_\varphi.\] </p>
 
\[E=mc^{2}u_{t};\qquad L=-m u_\varphi.\] </p>
Line 81: Line 81:
  
 
<div id="BlackHole55"></div>
 
<div id="BlackHole55"></div>
=== Problem 3. ===
+
=== Problem 3: Zero Angular Momentum Observer (particle) ===
 
Find the coordinate angular velocity $\Omega=\tfrac{d\varphi}{dt}$ of a particle with zero angular momentum $u_{\mu}(\partial_{\varphi})^{\mu}=0$.
 
Find the coordinate angular velocity $\Omega=\tfrac{d\varphi}{dt}$ of a particle with zero angular momentum $u_{\mu}(\partial_{\varphi})^{\mu}=0$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 109: Line 109:
  
 
<div id="BlackHole55plus"></div>
 
<div id="BlackHole55plus"></div>
=== Problem 4. ===
+
=== Problem 4: rewriting metric again ===
 
Calculate $A,B,C,D,\omega$ for the Kerr metric.
 
Calculate $A,B,C,D,\omega$ for the Kerr metric.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 127: Line 127:
 
   </div>
 
   </div>
 
</div>
 
</div>
 
  
 
==Limiting cases==
 
==Limiting cases==

Revision as of 22:31, 18 July 2012

Kerr solution is the solution of Einstein's equations in vacuum that describes a rotating black hole (or the metric outside of a rotating axially symmetric body) \cite{Kerr63}. In the Boyer-Lindquist coordinates \cite{BoyerLindquist67} it takes the form \begin{align}\label{Kerr} &&ds^2=\bigg(1-\frac{2\mu r}{\rho^2}\bigg)dt^2 +\frac{4\mu a \,r\sin^{2}\theta}{\rho^2} \;dt\,d\varphi -\frac{\rho^2}{\Delta}\;dr^2-\rho^2\, d\theta^2 +\qquad\nonumber\\ &&-\bigg( r^2+a^2+\frac{2\mu r\,a^2 \,\sin^{2}\theta}{\rho^2} \bigg) \sin^2 \theta\;d\varphi^2;\\ \label{Kerr-RhoDelta} &&\text{where}\quad \rho^2=r^2+a^2 \cos^2 \theta,\qquad \Delta=r^2-2\mu r+a^2. \end{align} Here $\mu$ is the black hole's mass, $J$ its angular momentum, $a=J/\mu$; $t$ and $\varphi$ are time and usual azimuth angle, while $r$ and $\theta$ are some coordinates that become the other two coordinates of the spherical coordinate system at $r\to\infty$.

General axially symmetric metric

A number of properties of the Kerr solution can be understood qualitatively without use of its specific form. In this problem we consider the axially symmetric metric of quite general kind \begin{equation}\label{AxiSimmMetric} ds^2=A dt^2-B(d\varphi-\omega dt)^{2}- C\,dr^2-D\,d\theta^{2},\end{equation} where functions $A,B,C,D,\omega$ depend only on $r$ and $\theta$.

Problem 1: preliminary algebra

Find the components of metric tensor $g_{\mu\nu}$ and its inverse $g^{\mu\nu}$.

Problem 2: integrals of motion

Write down the integrals of motion corresponding to Killing vectors $\partial_t$ and $\partial_\varphi$.

Problem 3: Zero Angular Momentum Observer (particle)

Find the coordinate angular velocity $\Omega=\tfrac{d\varphi}{dt}$ of a particle with zero angular momentum $u_{\mu}(\partial_{\varphi})^{\mu}=0$.

Problem 4: rewriting metric again

Calculate $A,B,C,D,\omega$ for the Kerr metric.

Limiting cases

Horizons and singularity

Stationary limit

Ergosphere and the Penrose process

Integrals of motion

The laws of mechanics of black holes

Particles' motion in the equatorial plane