Difference between revisions of "Light and distances"

From Universe in Problems
Jump to: navigation, search
(Problem 17: the maximum in Friedman models)
 
(14 intermediate revisions by the same user not shown)
Line 88: Line 88:
 
Then the observed luminosity is
 
Then the observed luminosity is
 
\[L=\frac{Edt_{e}\frac{a_e}{a_o}}{dt_{o}}=E\cdot \Big(\frac{a_e}{a_o}\Big)^{2},\]
 
\[L=\frac{Edt_{e}\frac{a_e}{a_o}}{dt_{o}}=E\cdot \Big(\frac{a_e}{a_o}\Big)^{2},\]
and the detected energy flux is
+
and, as this energy flux is distributed over a sphere of proper radius $R$, the detected energy flux is
 
\[F=\frac{L}{4\pi R^2}.\]
 
\[F=\frac{L}{4\pi R^2}.\]
 
On the other hand, the luminosity distance is defined though
 
On the other hand, the luminosity distance is defined though
Line 96: Line 96:
 
d_{L}=\frac{a_o}{a_e}R=(1+z)R
 
d_{L}=\frac{a_o}{a_e}R=(1+z)R
 
\end{equation}
 
\end{equation}
 +
In a spatially flat Universe $R=a_{o}\chi$, where $\chi$ is the comoving distance to the source, so
 +
\[d_{L}=(1+z)a_{o}\chi.\]
 
</p>
 
</p>
 
   </div>
 
   </div>
Line 110: Line 112:
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;">  
 
     <p style="text-align: left;">  
\[d_{L}(z)=(1+z)(1-\Omega_0)^{-1/2}\cdot H_{0}^{-1}\Sigma\Big[(1-\Omega_0)^{1/2}H_{0}
+
The above derivation holds mostly, with the exception that now the observed luminosity is distributed over the sphere of proper surface
\int\limits_{0}^{z}\frac{dz'}{H(z')}\Big],\]
+
\[S=4\pi a_{o}^{2}\Sigma^{2}(\chi),\]
 
where
 
where
\[\Sigma(z)=\left\{\begin{array}{ll}\sin x,&\quad \Omega_{0}>1,\\
+
\[\Sigma(x)=\left\{\begin{array}{ll}\sin x,&\quad \Omega_{0}>1,\\
x,&\quad \Omega_{0}=1\\ \sinh x,&\quad \Omega_{0}<1.\end{array}\right.\]</p>
+
x,&\quad \Omega_{0}=1\\ \sinh x,&\quad \Omega_{0}<1.\end{array}\right.\]
 +
and $\chi$ is the proper distance to the source. Expressing it through the observed quantities
 +
\[\chi=\int\frac{dt}{a}=\int\frac{da}{a^2 H}=\frac{1}{a_o}\int\frac{dz}{H}\]
 +
and using that $a=H^{-1}(\Omega-1)^{-1/2}$, we finally obtain
 +
\begin{align}
 +
d_{L}(z)&=(1+z)a_{o}\;\Sigma(\chi)\\
 +
&=(1+z)(1-\Omega_0)^{-1/2}\cdot H_{0}^{-1}\Sigma\Big[(1-\Omega_0)^{1/2}H_{0}
 +
\int\limits_{0}^{z}\frac{dz'}{H(z')}\Big],
 +
\end{align}
 +
</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 121: Line 132:
 
<div id="lad07"></div>
 
<div id="lad07"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 7: multi-component flat Universe  ===
 
=== Problem 7: multi-component flat Universe  ===
 
Find the expression for the luminosity distance for the multi-component flat Universe
 
Find the expression for the luminosity distance for the multi-component flat Universe
Line 178: Line 190:
 
\[\chi=\int\limits_{t}^{t_0}\frac{dt}{a(t)}\approx \frac{\Delta t}{a(t_0)}+\frac{H_{0}\Delta t^{2}}{2a(t_0)}\]
 
\[\chi=\int\limits_{t}^{t_0}\frac{dt}{a(t)}\approx \frac{\Delta t}{a(t_0)}+\frac{H_{0}\Delta t^{2}}{2a(t_0)}\]
 
and therefore
 
and therefore
\[d_{L}=a(t_0)(1+z)\chi=\frac{1}{H_0}\big[z+\frac{1}{2}(1-q_0)z^{2}+\ldots\]</p>
+
\[d_{L}=a(t_0)(1+z)\chi=\frac{1}{H_0}\big[z+\frac{1}{2}(1-q_0)z^{2}+\ldots\big]\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 191: Line 203:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"> solution</p>
+
     <p style="text-align: left;"> For the closed model
 +
\begin{align}
 +
\chi(z)&=\frac{\sqrt{2q_0 -1}}{q_0^2 (1+z)}\Big[q_0 z +(q_0 -1)\big(\sqrt{1+2q_0 z}\;-1\big)\Big],\\
 +
a_{0}&=\frac{H_0^{-1}}{\sqrt{2q_0 -1}},\\
 +
d_{L}(z)&=(1+z) a_{0}\chi \\
 +
&=\frac{1}{q_0^2 H_0}\Big[q_0 z +(q_0 -1)\big(\sqrt{1+2q_0 z}\;-1\big)\Big].
 +
\end{align}
 +
For the open model
 +
\begin{align}
 +
\chi(z)&=\frac{\sqrt{1-2q_0}}{q_0^2 (1+z)}\Big[q_0 z +(q_0 -1)\big(\sqrt{1+2q_0 z}\;-1\big)\Big],\\
 +
a_{0}&=\frac{H_0^{-1}}{\sqrt{1-2q_0 }},\\
 +
d_{L}(z)&=\frac{1}{q_0^2 H_0}\Big[q_0 z +(q_0 -1)\big(\sqrt{1+2q_0 z}\;-1\big)\Big].
 +
\end{align}
 +
The final expressions for $d_{L}$ are the same for all models ($k=0,\pm 1$). Note, that for Einstein-de Sitter $q_0=1/2$.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 203: Line 228:
 
<div id="lad12"></div>
 
<div id="lad12"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 12: angular diameter distance in terms of redshift ===
 
=== Problem 12: angular diameter distance in terms of redshift ===
 
Express the angular diameter distance in terms of the observed redshift
 
Express the angular diameter distance in terms of the observed redshift
Line 208: Line 234:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"> solution</p>
+
     <p style="text-align: left;">  
 +
First, let us choose the comoving coordinate system with the observer at the origin. Let the comoving coordinates of the end points of the source be $(\chi,\theta,\phi)$ and $\chi+\delta\chi,\theta+\delta\theta,\phi$. Take the FLRW metric in the form
 +
\[ds^{2}=dt^{2}-a^{2}(t)\big[d\chi^{2}-\Sigma^{2}(\chi)(d\theta^{2}+\sin^{2}\theta d\phi^{2})\big].\]
 +
Then the transverse size $\delta l_{\bot}$ of the source at the time of emission is
 +
\[\delta l_\bot=a(t_e)\Sigma(\chi)\delta \theta\]
 +
and
 +
\[d_{A}\equiv\frac{\delta l_{\bot}}{\delta\theta}
 +
=a_{e}\Sigma(\chi)=\frac{a_{o}}{1+z}\Sigma(\chi)=\frac{d_{L}}{(1+z)^{2}}.\]
 +
</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 215: Line 249:
 
<div id="lad13"></div>
 
<div id="lad13"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 13: in terms of $q(z)$ ===
 
=== Problem 13: in terms of $q(z)$ ===
 
Express the angular diameter distance in terms of $q(z)$
 
Express the angular diameter distance in terms of $q(z)$
Line 220: Line 255:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"> solution</p>
+
     <p style="text-align: left;">  
 +
\begin{align}
 +
d_{A}&=\frac{H_0^{-1}}{1+z}\int\limits_{0}^{z}\frac{dz'}{H(z')}\\
 +
&=\frac{H_0^{-1}}{1+z}\int\limits_{0}^{z}du\exp\Big\{-\int\limits_{0}^{z}\big[1+q(z')\big]d\ln(1+z')\Big\}.
 +
\end{align}</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 234: Line 273:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"> solution</p>
+
     <p style="text-align: left;"> For the expansion $q(z)=q_{0}+zq_{1}$ the integral obtained in the previous problem can be evaluated analytically
 +
\[d_{A}(z)=\frac{H_0^{-1}}{1+z}e^{q_1}q_{1}^{q_{0}-q_{1}}
 +
\big[\gamma(q_{1}-q_{0},(z+1)q_{1})-\gamma(q_{1}-q_{0},q_{1})\big],\]
 +
where $\gamma(\alpha,x)$ is the incomplete gamma-function
 +
\[\gamma(\alpha,z)=\int\limits_{0}^{z}dt\,e^{-t}t^{\alpha-1},\qquad (\mathrm{Re}\alpha>0).\]
 +
Using this expression, we can obtain information on $q_0$ and $q_1$, and consequently, on the global evolution of the deceleration parameter $q(z)$.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 247: Line 291:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"> solution</p>
+
     <p style="text-align: left;">  
 +
\[d_{A}(z)=\frac{H_{0}^{-1}}{1+z}e^{q_{1}q_{1}^{-(q_{0}+q_{1})}}
 +
\big[\gamma(q_0 +q_1, q_1)-\gamma(q_0 +q_1 , (1+z)^{-1}q_{1})\big].\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 259: Line 305:
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"> solution</p>
+
     <p style="text-align: left;">  
 +
The angular diameter distance for Einstein-de Sitter is
 +
\[d_{A}=\frac{2}{H_0}\Big(\frac{1}{1+z}-\frac{1}{(1+z)^{3/2}}\Big),\]
 +
so
 +
\[\frac{dd_{A}}{dz}=0\quad \Leftrightarrow\quad 2\sqrt{1+z}-3=0,\quad\Leftrightarrow\quad z_{max}=1.25.\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 268: Line 318:
 
=== Problem 17: the maximum in Friedman models  ===
 
=== Problem 17: the maximum in Friedman models  ===
 
Find the redshift for which the angular diameter distance reaches the maximum in the closed and open Friedman models$^*$
 
Find the redshift for which the angular diameter distance reaches the maximum in the closed and open Friedman models$^*$
 +
 
$^*$ Juri Shtanov, Lecture notes on theoretical cosmology, 2010
 
$^*$ Juri Shtanov, Lecture notes on theoretical cosmology, 2010
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"> solution</p>
+
     <p style="text-align: left;">  
 +
For the closed model
 +
\[\Sigma(\chi)=\sin\chi\]
 +
and
 +
\[a(\eta)=\frac{\alpha}{2}(1-\cos\eta),\]
 +
where $\alpha$ is some constant. Then
 +
\[d_{A}(\eta)=a_{e}\Sigma(\chi)\sim (1-\cos\eta_{e})\sin(\eta_{o}-\eta_{e}),\]
 +
where subscripts "e" and "o" denote emission and observation respectively, and condition
 +
\[\frac{dd_{A}}{d\eta_{e}}=0\]
 +
is transformed, after renaming $\eta_{e}\equiv \eta$, to
 +
\[0=\sin\eta\; \sin(\eta_o -\eta)-(1-\cos\eta)\cos(\eta_o -\eta)\sim \cos(2\eta-\eta_o)-\cos(\eta-\eta_o)
 +
\sim \sin \frac{3\eta-2\eta_o}{2}\sin\frac{\eta}{2}.\]
 +
So the maximum $d_A$ is realized for $\eta_{e}=\frac{2}{3}\eta_{o}$. The corresponding redshift is found from
 +
\[1+z_{\max}=\frac{a_o}{a_e}=\frac{1-\cos \eta_o}{1-\cos\eta_e}=\frac{1-\cos \eta_o}{1-\cos\frac{2}{3}\eta_o}.\]
 +
 
 +
In the open model, following the same procedure, one obtains the same result with trigonometric functions replaced by hyperbolic ones.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
</div></div>
+
</div>

Latest revision as of 12:57, 7 October 2012


Problem 1: comoving distance in a flat Universe

Find the comoving distance to a galaxy as function of redshift in a spatially flat Universe


Problem 2: the proper distance

Determine the "physical" distance -- the proper distance measured along the hypersurface of constant cosmological time -- to an object that is observed with redshift $z$


Problem 3: comoving distance in Einstein-de Sitter

Solve the previous problem for a flat Universe with domination of non-relativistic matter (the Einstein-de Sitter model)


Problem 4: recession velocity

Determine the recession velocity caused by the cosmological expansion for an object with redshift $z$ in a flat Universe


In cosmology the are other types of distances used, besides the proper and comoving one. One of the most frequently used is the photometric distance. Let $E$, $[E]=J/s$, be the internal absolute luminosity of some source. The observer on Earth detects energy flux $F$, $[F]=J/s\cdot m^2$. The luminosity distance to the source $d_{L}$ is then defined through \[F=\frac{E}{4\pi d_{L}^{2}}.\] Thus this would be the distance to the observed object, given its absolute and observed luminosities, in a flat and stationary Universe. Non-stationarity and curvature imply that $d_{L}$ in general does not coincide with the proper distance.


Problem 5: luminosity distance in a flat Universe

Express the luminosity distance in terms of observed redshift for a spatially flat Universe


Problem 6: generalization to arbitrary curvature

Generalize the result of the previous problem to the case of arbitrary curvature


Problem 7: multi-component flat Universe

Find the expression for the luminosity distance for the multi-component flat Universe


Problem 8: luminocity distance in terms of deceleration parameter

Express the luminosity distance in a flat Universe in terms of the redshift dependence of deceleration parameter $q(z)$


Problem 9: Einstein-de Sitter

Express the luminosity distance in terms of redshift for the Einstein-de Sitter model


Problem 10: small redshifts limit

Show that in the first order by $z\ll 1$ luminosity distance is $d_{L}\approx z /H_{0}$ and find the second order correction


Problem 11: the closed and open dusty Universes

Derive the luminosity distance as function of redshift for the closed and open models of the Universe, dominated by non-relativistic matter (dust)


Another distance used is the angular diameter distance. It is defined through the angular dimension of the object $\delta \theta$ and its proper transverse size $\delta l$ as \[d_{A}=\frac{\delta l}{\delta \theta}.\] Again, in a stationary and flat Universe this is reduced to the ordinary distance, while in general they differ.


Problem 12: angular diameter distance in terms of redshift

Express the angular diameter distance in terms of the observed redshift


Problem 13: in terms of $q(z)$

Express the angular diameter distance in terms of $q(z)$


Problem 14: a two-parametric expansion

Find $d_{A}(z)$ in a flat Friedman Universe for the linear two-parametric expansion$^*$ \[q(z)=q_{0}+q_{1}(z).\] $^*$ J. Lima et al. arXiv:0905.2628


Problem 15: another expansion

Find $d_{A}(z)$ in a flat Friedman Universe for the linear two-parametric expansion \[q(z)=q_{0}+q_{1}\frac{z}{1+z}.\]


Problem 16: maximum of angular diameter distance in Einstein-de Sitter

Find the redshift for which the angular diameter distance of an object in the Einstein-de Sitter Universe reaches its maximum


Problem 17: the maximum in Friedman models

Find the redshift for which the angular diameter distance reaches the maximum in the closed and open Friedman models$^*$

$^*$ Juri Shtanov, Lecture notes on theoretical cosmology, 2010