Difference between revisions of "Light and distances"

From Universe in Problems
Jump to: navigation, search
(Created page with "9 __TOC__ <div id="lad01"></div> === Problem 1: proper distance === Determine the "physical" distance -- the proper distance measured along ...")
 
Line 4: Line 4:
  
 
<div id="lad01"></div>
 
<div id="lad01"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1: proper distance ===
 
=== Problem 1: proper distance ===
 
Determine the "physical" distance -- the proper distance measured along the hypersurface of constant cosmological time -- to an object that is observed with redshift $z$
 
Determine the "physical" distance -- the proper distance measured along the hypersurface of constant cosmological time -- to an object that is observed with redshift $z$
Line 11: Line 12:
 
     <p style="text-align: left;"> solution</p>
 
     <p style="text-align: left;"> solution</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
 
<div id="lad02"></div>
 
<div id="lad02"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 2:  comoving distance in a flat Universe===
 
=== Problem 2:  comoving distance in a flat Universe===
 
Find the comoving distance to a galaxy as function of redshift in a spatially flat Universe
 
Find the comoving distance to a galaxy as function of redshift in a spatially flat Universe
Line 22: Line 24:
 
     <p style="text-align: left;"> solution</p>
 
     <p style="text-align: left;"> solution</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
 
<div id="lad03"></div>
 
<div id="lad03"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 3: comoving distance in Einstein-de Sitter  ===
 
=== Problem 3: comoving distance in Einstein-de Sitter  ===
 
Solve the previous problem for a flat Universe with domination of non-relativistic matter (the Einstein-de Sitter model)
 
Solve the previous problem for a flat Universe with domination of non-relativistic matter (the Einstein-de Sitter model)
Line 32: Line 36:
 
     <p style="text-align: left;"> solution</p>
 
     <p style="text-align: left;"> solution</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
 
<div id="lad04"></div>
 
<div id="lad04"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 4: recession velocity  ===
 
=== Problem 4: recession velocity  ===
 
Determine the recession velocity caused by the cosmological expansion for an object with redshift $z$ in a flat Universe
 
Determine the recession velocity caused by the cosmological expansion for an object with redshift $z$ in a flat Universe
Line 42: Line 48:
 
     <p style="text-align: left;"> solution</p>
 
     <p style="text-align: left;"> solution</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
 
''In cosmology the are other types of distances used, besides the proper and comoving one. One of the most frequently used is the photometric distance. Let'' $E$, $[E]=J/s$, ''be the internal absolute luminosity of some source. The observer on Earth detects energy flux'' $F$, $[F]=J/s\cdot m^2$. ''The luminosity distance to the source'' $d_{L}$ ''is then defined through''
 
''In cosmology the are other types of distances used, besides the proper and comoving one. One of the most frequently used is the photometric distance. Let'' $E$, $[E]=J/s$, ''be the internal absolute luminosity of some source. The observer on Earth detects energy flux'' $F$, $[F]=J/s\cdot m^2$. ''The luminosity distance to the source'' $d_{L}$ ''is then defined through''
 
\[F=\frac{E}{4\pi d_{L}^{2}}.\]
 
\[F=\frac{E}{4\pi d_{L}^{2}}.\]
 
''Thus this would be the distance to the observed object, given its absolute and observed luminosities, in a flat and stationary Universe. Non-stationarity and curvature imply that $d_{L}$ in general does not coincide with the proper distance.''
 
''Thus this would be the distance to the observed object, given its absolute and observed luminosities, in a flat and stationary Universe. Non-stationarity and curvature imply that $d_{L}$ in general does not coincide with the proper distance.''
 +
  
 
<div id="lad05"></div>
 
<div id="lad05"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 5: luminosity distance in a flat Universe  ===
 
=== Problem 5: luminosity distance in a flat Universe  ===
 
Express the luminosity distance in terms of observed redshift for a spatially flat Universe
 
Express the luminosity distance in terms of observed redshift for a spatially flat Universe
Line 56: Line 65:
 
     <p style="text-align: left;"> solution</p>
 
     <p style="text-align: left;"> solution</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
 
<div id="lad06"></div>
 
<div id="lad06"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 6: generalization to arbitrary curvature  ===
 
=== Problem 6: generalization to arbitrary curvature  ===
 
Generalize the result of the previous problem to the case of arbitrary curvature
 
Generalize the result of the previous problem to the case of arbitrary curvature
Line 66: Line 77:
 
     <p style="text-align: left;"> solution</p>
 
     <p style="text-align: left;"> solution</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
 
<div id="lad07"></div>
 
<div id="lad07"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 7: multi-component flat Universe  ===
 
=== Problem 7: multi-component flat Universe  ===
 
Find the expression for the luminosity distance for the multi-component flat Universe
 
Find the expression for the luminosity distance for the multi-component flat Universe
Line 76: Line 89:
 
     <p style="text-align: left;"> solution</p>
 
     <p style="text-align: left;"> solution</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
 
<div id="lad08"></div>
 
<div id="lad08"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 8: luminocity distance in terms of deceleration parameter ===
 
=== Problem 8: luminocity distance in terms of deceleration parameter ===
 
Express the luminosity distance in a flat Universe in terms of the redshift dependence of deceleration parameter $q(z)$
 
Express the luminosity distance in a flat Universe in terms of the redshift dependence of deceleration parameter $q(z)$
Line 86: Line 101:
 
     <p style="text-align: left;"> solution</p>
 
     <p style="text-align: left;"> solution</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
 
<div id="lad09"></div>
 
<div id="lad09"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 9: Einstein-de Sitter  ===
 
=== Problem 9: Einstein-de Sitter  ===
 
Express the luminosity distance in terms of redshift for the Einstein-de Sitter model
 
Express the luminosity distance in terms of redshift for the Einstein-de Sitter model
Line 96: Line 113:
 
     <p style="text-align: left;"> solution</p>
 
     <p style="text-align: left;"> solution</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
 
<div id="lad10"></div>
 
<div id="lad10"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 10: small redshifts  ===
 
=== Problem 10: small redshifts  ===
 
Show that in the first order by $z\ll 1$ luminosity distance is $d_{L}\approx z /H_{0}$ and find the second order correction
 
Show that in the first order by $z\ll 1$ luminosity distance is $d_{L}\approx z /H_{0}$ and find the second order correction
Line 106: Line 125:
 
     <p style="text-align: left;"> solution</p>
 
     <p style="text-align: left;"> solution</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
 +
 
  
 
<div id="lad11"></div>
 
<div id="lad11"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 11: the closed and open dusty Universes  ===
 
=== Problem 11: the closed and open dusty Universes  ===
 
Derive the luminosity distance as function of redshift for the closed and open models of the Universe, dominated by non-relativistic matter (dust)
 
Derive the luminosity distance as function of redshift for the closed and open models of the Universe, dominated by non-relativistic matter (dust)
Line 116: Line 137:
 
     <p style="text-align: left;"> solution</p>
 
     <p style="text-align: left;"> solution</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
  
  
Line 122: Line 143:
 
\[d_{A}=\frac{\delta l}{\delta \theta}.\]
 
\[d_{A}=\frac{\delta l}{\delta \theta}.\]
 
''Again, in a stationary and flat Universe this is reduced to the ordinary distance, while in general they differ.''
 
''Again, in a stationary and flat Universe this is reduced to the ordinary distance, while in general they differ.''
 +
  
 
<div id="lad12"></div>
 
<div id="lad12"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 12: angular diameter distance in terms of redshift ===
 
=== Problem 12: angular diameter distance in terms of redshift ===
 
Express the angular diameter distance in terms of the observed redshift
 
Express the angular diameter distance in terms of the observed redshift
Line 131: Line 154:
 
     <p style="text-align: left;"> solution</p>
 
     <p style="text-align: left;"> solution</p>
 
   </div>
 
   </div>
</div>
+
</div></div>

Revision as of 10:51, 27 September 2012


Problem 1: proper distance

Determine the "physical" distance -- the proper distance measured along the hypersurface of constant cosmological time -- to an object that is observed with redshift $z$


Problem 2: comoving distance in a flat Universe

Find the comoving distance to a galaxy as function of redshift in a spatially flat Universe


Problem 3: comoving distance in Einstein-de Sitter

Solve the previous problem for a flat Universe with domination of non-relativistic matter (the Einstein-de Sitter model)


Problem 4: recession velocity

Determine the recession velocity caused by the cosmological expansion for an object with redshift $z$ in a flat Universe


In cosmology the are other types of distances used, besides the proper and comoving one. One of the most frequently used is the photometric distance. Let $E$, $[E]=J/s$, be the internal absolute luminosity of some source. The observer on Earth detects energy flux $F$, $[F]=J/s\cdot m^2$. The luminosity distance to the source $d_{L}$ is then defined through \[F=\frac{E}{4\pi d_{L}^{2}}.\] Thus this would be the distance to the observed object, given its absolute and observed luminosities, in a flat and stationary Universe. Non-stationarity and curvature imply that $d_{L}$ in general does not coincide with the proper distance.


Problem 5: luminosity distance in a flat Universe

Express the luminosity distance in terms of observed redshift for a spatially flat Universe


Problem 6: generalization to arbitrary curvature

Generalize the result of the previous problem to the case of arbitrary curvature


Problem 7: multi-component flat Universe

Find the expression for the luminosity distance for the multi-component flat Universe


Problem 8: luminocity distance in terms of deceleration parameter

Express the luminosity distance in a flat Universe in terms of the redshift dependence of deceleration parameter $q(z)$


Problem 9: Einstein-de Sitter

Express the luminosity distance in terms of redshift for the Einstein-de Sitter model


Problem 10: small redshifts

Show that in the first order by $z\ll 1$ luminosity distance is $d_{L}\approx z /H_{0}$ and find the second order correction


Problem 11: the closed and open dusty Universes

Derive the luminosity distance as function of redshift for the closed and open models of the Universe, dominated by non-relativistic matter (dust)


Another distance used is the angular diameter distance. It is defined through the angular dimension of the object $\delta \theta$ and its proper transverse size $\delta l$ as \[d_{A}=\frac{\delta l}{\delta \theta}.\] Again, in a stationary and flat Universe this is reduced to the ordinary distance, while in general they differ.


Problem 12: angular diameter distance in terms of redshift

Express the angular diameter distance in terms of the observed redshift