Difference between revisions of "New Cosmography"

From Universe in Problems
Jump to: navigation, search
Line 49: Line 49:
 
<p style= "color: #999;font-size: 11px">problem id: cs-4</p>
 
<p style= "color: #999;font-size: 11px">problem id: cs-4</p>
 
Obtain the following relations between the deceleration parameter and Hubble's parameter
 
Obtain the following relations between the deceleration parameter and Hubble's parameter
$$q(t)=\frac{d}{dt}(\frac{1}{H})-1;\,q(z)=\frac{1+z}{H}\frac{dH}{dz}-1\,q(z)=\frac{d\ln H}{dz}(1+z)-1$$
+
$$q(t)=\frac{d}{dt}(\frac{1}{H})-1;\,\,q(z)=\frac{1+z}{H}\frac{dH}{dz}-1;\,\,q(z)=\frac{d\ln H}{dz}(1+z)-1.$$
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>

Revision as of 23:53, 1 February 2016

First section of Cosmography


Problem 1

problem id: cs-1

Using the cosmographic parameters introduced above, expand the scale factor into a Taylor series in time.


Problem 2

problem id: cs-2

Using the cosmographic parameters, expand the redshift into a Taylor series in time.


Problem 3

problem id: cs-3

What is the reason for the statement that the cosmological parameters are model-independent?


Problem 4

problem id: cs-4

Obtain the following relations between the deceleration parameter and Hubble's parameter $$q(t)=\frac{d}{dt}(\frac{1}{H})-1;\,\,q(z)=\frac{1+z}{H}\frac{dH}{dz}-1;\,\,q(z)=\frac{d\ln H}{dz}(1+z)-1.$$

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id: