Difference between revisions of "New Cosmography"

From Universe in Problems
Jump to: navigation, search
Line 105: Line 105:
 
<div id="cs-8"></div>
 
<div id="cs-8"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
'''Problem '''
+
'''Problem 8'''
 
<p style= "color: #999;font-size: 11px">problem id: cs-8</p>
 
<p style= "color: #999;font-size: 11px">problem id: cs-8</p>
 
Show that for the deceleration parameter the following relation holds:
 
Show that for the deceleration parameter the following relation holds:
 
$$q(a)=-\left(1+\frac{dH/dt}{H^2}\right)-\left(1+\frac{adH/da}{H}\right)$$
 
$$q(a)=-\left(1+\frac{dH/dt}{H^2}\right)-\left(1+\frac{adH/da}{H}\right)$$
<div class="NavFrame collapsed">
+
</div>
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
  
  
<div id=""></div>
+
<div id=""cs-9"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
'''Problem '''
+
'''Problem 9'''
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: "cs-9</p>
 +
Show that $$\frac{dq}{d\ln (1+z)}=j-q(2q+1)$$
 +
</div>
  
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;"></p>
 
  </div>
 
</div></div>
 
  
 
+
<div id="cs-10"></div>
<div id=""></div>
+
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
'''Problem '''
+
'''Problem 10'''
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: cs-10</p>
 
+
Let \[C_{n} \equiv \gamma _{n} \frac{a^{(n)} }{aH^{n} }  ,\]
 +
where $a^{(n)} $ is n-th time derivative of the scale factor, $n\ge 2$ , $\gamma _{2} =-1,\; \gamma _{n} =1$ äëÿ $n>2$ . Then$C_{2} =q,\; C_{3} =j,\; C_{4} =s\ldots $ Obtain $dC_{n} /d\ln (1+z)$ .
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\[\begin{array}{l} {\frac{dC_{n} }{d\ln (1+z)} =-a\frac{dC_{n} }{da} =-\frac{1}{H} \frac{dC_{n} }{dt} ;} \\ {\frac{dC_{n} }{d\ln (1+z)} =-\gamma _{n} \left(\frac{a^{\left(n+1\right)} }{aH^{n+1} } -\frac{a^{\left(n\right)} }{aH^{n} } -n\frac{a^{(n)} \dot{H}}{aH^{n+2} } \right)=} \\ {=-\gamma _{n} \left(\frac{1}{\gamma _{n+1} } C_{n+1} -\frac{1}{\gamma _{n} } C_{n} -\frac{1}{\gamma _{n} } nC_{n} \frac{\dot{H}}{H^{2} } \right);} \\ {\frac{dC_{n} }{d\ln (1+z)} =-\frac{\gamma _{n} }{\gamma _{n+1} } C_{n+1} +C_{n} -nC_{n} (1+q)} \end{array}\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
<div id=""></div>
+
 
 +
<div id="cs-11"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
'''Problem '''
+
'''Problem 11'''
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: cs-11</p>
  
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">

Revision as of 21:24, 1 February 2016

First section of Cosmography


Problem 1

problem id: cs-1

Using the cosmographic parameters introduced above, expand the scale factor into a Taylor series in time.


Problem 2

problem id: cs-2

Using the cosmographic parameters, expand the redshift into a Taylor series in time.


Problem 3

problem id: cs-3

What is the reason for the statement that the cosmological parameters are model-independent?


Problem 4

problem id: cs-4

Obtain the following relations between the deceleration parameter and Hubble's parameter $$q(t)=\frac{d}{dt}(\frac{1}{H})-1;\,\,q(z)=\frac{1+z}{H}\frac{dH}{dz}-1;\,\,q(z)=\frac{d\ln H}{dz}(1+z)-1.$$


Problem 5

problem id: cs-5

Show that the deceleration parameter can be defined by the relation \[q=-\frac{d\dot{a}}{Hda} \]


Problem 6

problem id: cs-6

Classify models of Universe basing on the two cosmographic parameters -- the Hubble parameter and the deceleration parameter.


Problem 7

problem id: cs-7

Show that the deceleration parameter $q$ can be presented in the form $$q(x)=\frac{\dot{H}(x)}{H(x)}x-1;\,\,x=1+z$$


Problem 8

problem id: cs-8

Show that for the deceleration parameter the following relation holds: $$q(a)=-\left(1+\frac{dH/dt}{H^2}\right)-\left(1+\frac{adH/da}{H}\right)$$


Problem 9

problem id: "cs-9

Show that $$\frac{dq}{d\ln (1+z)}=j-q(2q+1)$$


Problem 10

problem id: cs-10

Let \[C_{n} \equiv \gamma _{n} \frac{a^{(n)} }{aH^{n} } ,\] where $a^{(n)} $ is n-th time derivative of the scale factor, $n\ge 2$ , $\gamma _{2} =-1,\; \gamma _{n} =1$ äëÿ $n>2$ . Then$C_{2} =q,\; C_{3} =j,\; C_{4} =s\ldots $ Obtain $dC_{n} /d\ln (1+z)$ .


Problem 11

problem id: cs-11


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id: