New Cosmography

From Universe in Problems
Revision as of 23:58, 1 February 2016 by Cosmo All (Talk | contribs)

Jump to: navigation, search

First section of Cosmography


Problem 1

problem id: cs-1

Using the cosmographic parameters introduced above, expand the scale factor into a Taylor series in time.


Problem 2

problem id: cs-2

Using the cosmographic parameters, expand the redshift into a Taylor series in time.


Problem 3

problem id: cs-3

What is the reason for the statement that the cosmological parameters are model-independent?


Problem 4

problem id: cs-4

Obtain the following relations between the deceleration parameter and Hubble's parameter $$q(t)=\frac{d}{dt}(\frac{1}{H})-1;\,\,q(z)=\frac{1+z}{H}\frac{dH}{dz}-1;\,\,q(z)=\frac{d\ln H}{dz}(1+z)-1.$$


Problem 5

problem id: cs-5

Show that the deceleration parameter can be defined by the relation \[q=-\frac{d\dot{a}}{Hda} \]


Problem 6

problem id: cs-6

Classify models of Universe basing on the two cosmographic parameters -- the Hubble parameter and the deceleration parameter.


Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id:

Problem

problem id:


Problem

problem id: