Difference between revisions of "New Cosmography"

From Universe in Problems
Jump to: navigation, search
Line 232: Line 232:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
'''Problem '''
+
'''Problem 18'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Can $dH^{n} /dz^{n} $ generally be expressed in terms of the cosmographic parameters?
 +
</div>
  
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;"></p>
 
  </div>
 
</div></div>
 
  
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
'''Problem '''
+
'''Problem 19'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Show that $$q(z)=frac 12 \frac{d\ln H^2}{d\ln(1+z)}$$
<div class="NavFrame collapsed">
+
</div>
  <div class="NavHead">solution</div>
+
  <div style="width:100%;" class="NavContent">
+
    <p style="text-align: left;"></p>
+
  </div>
+
</div></div>
+
  
  
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
'''Problem '''
+
'''Problem 20'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Show that the time derivatives of the Hubble's parameter can be expressed through the cosmographic parameters as follows:
 +
$$\dot{H}=-H^2(1+q);$$
 +
$$\ddot{H}=H^3(j+3q+2)$$
 +
$$\dddot{H}=H^4\left(s-4j-3q(q+4)-6\right)$$
 +
$$\ddddot{H}$$
 +
generally be expressed in terms of the cosmographic parameters?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>

Revision as of 01:45, 2 February 2016

First section of → Cosmography


Problem 1

problem id: cs-1

Using the cosmographic parameters introduced above, expand the scale factor into a Taylor series in time.


Problem 2

problem id: cs-2

Using the cosmographic parameters, expand the redshift into a Taylor series in time.


Problem 3

problem id: cs-3

What is the reason for the statement that the cosmological parameters are model-independent?


Problem 4

problem id: cs-4

Obtain the following relations between the deceleration parameter and Hubble's parameter $$q(t)=\frac{d}{dt}(\frac{1}{H})-1;\,\,q(z)=\frac{1+z}{H}\frac{dH}{dz}-1;\,\,q(z)=\frac{d\ln H}{dz}(1+z)-1.$$


Problem 5

problem id: cs-5

Show that the deceleration parameter can be defined by the relation \[q=-\frac{d\dot{a}}{Hda} \]


Problem 6

problem id: cs-6

Classify models of Universe basing on the two cosmographic parameters -- the Hubble parameter and the deceleration parameter.


Problem 7

problem id: cs-7

Show that the deceleration parameter $q$ can be presented in the form $$q(x)=\frac{\dot{H}(x)}{H(x)}x-1;\,\,x=1+z$$


Problem 8

problem id: cs-8

Show that for the deceleration parameter the following relation holds: $$q(a)=-\left(1+\frac{dH/dt}{H^2}\right)-\left(1+\frac{adH/da}{H}\right)$$


Problem 9

problem id: "cs-9

Show that $$\frac{dq}{d\ln (1+z)}=j-q(2q+1)$$


Problem 10

problem id: cs-10

Let \[C_{n} \equiv \gamma _{n} \frac{a^{(n)} }{aH^{n} } ,\] where $a^{(n)} $ is n-th time derivative of the scale factor, $n\ge 2$ , $\gamma _{2} =-1,\; \gamma _{n} =1$ äëÿ $n>2$ . Then$C_{2} =q,\; C_{3} =j,\; C_{4} =s\ldots $ Obtain $dC_{n} /d\ln (1+z)$ .


Problem 11

problem id: cs-11

Use result of the previous problem to find $dC_{n} /dt$.


Problem 12

problem id: cs-12

Use the general formula for $dC_{n} /dt$ obtained in the previous problem to obtain time derivatives of the cosmographic parameters $q,j,s,l$.


Problem 13

problem id: cs-13

Find derivatives of the cosmographic parameter w.r.t. the red shift.


Problem 14

problem id: cs-14

Let $1+z=1/a\equiv x$. Find $q(x)$ and $j(x)$.