Difference between revisions of "New from June"

From Universe in Problems
Jump to: navigation, search
Line 1: Line 1:
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_0</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 1''' <p style= "color: #999;font-size: 11px">problem id: 150_0</p>  
 
Comprehensive explanations of the expanding Universe often use the balloon analogy. Although the balloon analogy is useful, one must guard against misconceptions that it can generate. Point out the misconceptions that appear when using this analogy [see M.O. Farooq, Observational constraints  on dark energy cosmological model parameters, arXiv: 1309.3710.]
 
Comprehensive explanations of the expanding Universe often use the balloon analogy. Although the balloon analogy is useful, one must guard against misconceptions that it can generate. Point out the misconceptions that appear when using this analogy [see M.O. Farooq, Observational constraints  on dark energy cosmological model parameters, arXiv: 1309.3710.]
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 10: Line 10:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_1</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 2''' <p style= "color: #999;font-size: 11px">problem id: 150_1</p>  
 
(into the [[Cosmography#150_1|cosmography]] and extended deceleration parameter) Show that \[\frac{d\dot a}{da}=-Hq.\]
 
(into the [[Cosmography#150_1|cosmography]] and extended deceleration parameter) Show that \[\frac{d\dot a}{da}=-Hq.\]
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 18: Line 18:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_2</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 3''' <p style= "color: #999;font-size: 11px">problem id: 150_2</p>  
 
Give a physical interpretation of the conservation equation.
 
Give a physical interpretation of the conservation equation.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 29: Line 29:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_04</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 4''' <p style= "color: #999;font-size: 11px">problem id: 150_04</p>  
 
Find evolution equation for the density parameter $\Omega$ of the single-fluid FLRW models with the linear equation of state $p=w\rho$.
 
Find evolution equation for the density parameter $\Omega$ of the single-fluid FLRW models with the linear equation of state $p=w\rho$.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 50: Line 50:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_05</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 5''' <p style= "color: #999;font-size: 11px">problem id: 150_05</p>  
 
Solve the previous problem for the multi-component case.
 
Solve the previous problem for the multi-component case.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 65: Line 65:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_06</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 6''' <p style= "color: #999;font-size: 11px">problem id: 150_06</p>  
 
Use the conformal time to prove existence of smooth transition from the radiation-dominated era to the matter dominated one.
 
Use the conformal time to prove existence of smooth transition from the radiation-dominated era to the matter dominated one.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 79: Line 79:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_07</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 7''' <p style= "color: #999;font-size: 11px">problem id: 150_07</p>  
 
Consider a set of the cosmographic parameters built from the Hubble parameter and its time derivatives [see S. Carloni, A new approach to the analysis of the phase space of f(R)-gravity, arXiv:1505.06015) ] \[Q\equiv\frac{\dot H}{H^2},\quad J\equiv\frac{\ddot H H}{\dot H^2},\quad S\equiv\frac{\dddot H H^2}{\dot H^3},\ldots \] Express them in terms of the ''canonic'' cosmographic parameters $q,j,s\dots$.
 
Consider a set of the cosmographic parameters built from the Hubble parameter and its time derivatives [see S. Carloni, A new approach to the analysis of the phase space of f(R)-gravity, arXiv:1505.06015) ] \[Q\equiv\frac{\dot H}{H^2},\quad J\equiv\frac{\ddot H H}{\dot H^2},\quad S\equiv\frac{\dddot H H^2}{\dot H^3},\ldots \] Express them in terms of the ''canonic'' cosmographic parameters $q,j,s\dots$.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 88: Line 88:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_08</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 8''' <p style= "color: #999;font-size: 11px">problem id: 150_08</p>  
 
Consider another set of the cosmographic parameters [see S. Carloni, A new approach to the analysis of the phase space of f(R)-gravity, arXiv:1505.06015) ] \[\bar Q\equiv\frac{H_{,N}}{H},\quad \bar J\equiv\frac{H_{,NN}}{H},\quad \bar S\equiv\frac{H_{,NNN}}{H},\ldots,\] where \[H_{,N}\equiv \frac{dH}{d\ln a}.\] Express them in terms of the Hubble parameter and its time derivatives.
 
Consider another set of the cosmographic parameters [see S. Carloni, A new approach to the analysis of the phase space of f(R)-gravity, arXiv:1505.06015) ] \[\bar Q\equiv\frac{H_{,N}}{H},\quad \bar J\equiv\frac{H_{,NN}}{H},\quad \bar S\equiv\frac{H_{,NNN}}{H},\ldots,\] where \[H_{,N}\equiv \frac{dH}{d\ln a}.\] Express them in terms of the Hubble parameter and its time derivatives.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 97: Line 97:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_09</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 9''' <p style= "color: #999;font-size: 11px">problem id: 150_09</p>  
 
Express the Ricci scalar and its time derivatives in terms of the $\bar Q$, $\bar J$ and $\bar S$.
 
Express the Ricci scalar and its time derivatives in terms of the $\bar Q$, $\bar J$ and $\bar S$.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 109: Line 109:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_3</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 10''' <p style= "color: #999;font-size: 11px">problem id: 150_3</p>  
 
Show that for a perfect fluid with EoS $p=w(a)\rho$ the adiabatic sound speed can be represented in the form \[c_S^2=w(a)-\frac13\frac{d\ln(1+w)}{d\ln a}.\]
 
Show that for a perfect fluid with EoS $p=w(a)\rho$ the adiabatic sound speed can be represented in the form \[c_S^2=w(a)-\frac13\frac{d\ln(1+w)}{d\ln a}.\]
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 120: Line 120:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_4</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 11''' <p style= "color: #999;font-size: 11px">problem id: 150_4</p>  
 
Obtain equation for $\ddot\rho(t)$, where $\rho(t)$ is energy density of an ideal fluid participating in the cosmological expansion.
 
Obtain equation for $\ddot\rho(t)$, where $\rho(t)$ is energy density of an ideal fluid participating in the cosmological expansion.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 133: Line 133:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_5</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 12''' <p style= "color: #999;font-size: 11px">problem id: 150_5</p>  
 
Show that in the case of the flat Friedmann metric, the third power of the scale factor $\varphi\equiv a^3$ satisfies the equation \[\frac{d^2\varphi}{dt^2}=\frac32(\rho-p)\varphi,\quad 8\pi G=1.\] Check validity of this equation for different cosmological components: non-relativistic matter, cosmological constant and a component with EoS $p=w\rho$.
 
Show that in the case of the flat Friedmann metric, the third power of the scale factor $\varphi\equiv a^3$ satisfies the equation \[\frac{d^2\varphi}{dt^2}=\frac32(\rho-p)\varphi,\quad 8\pi G=1.\] Check validity of this equation for different cosmological components: non-relativistic matter, cosmological constant and a component with EoS $p=w\rho$.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 141: Line 141:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_6</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 13''' <p style= "color: #999;font-size: 11px">problem id: 150_6</p>  
 
The lookback time is defined as the difference between the present day age of the Universe and its age at redshift $z$, i.e. the difference between the age of the Universe at observation $t_0$ and the age of the Universe, $t$, when the photons were emitted. Find the lookback time for the Universe filled with non-relativistic matter, radiation and a component with the EoS $p=w(z)\rho$.
 
The lookback time is defined as the difference between the present day age of the Universe and its age at redshift $z$, i.e. the difference between the age of the Universe at observation $t_0$ and the age of the Universe, $t$, when the photons were emitted. Find the lookback time for the Universe filled with non-relativistic matter, radiation and a component with the EoS $p=w(z)\rho$.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 158: Line 158:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_7</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 14''' <p style= "color: #999;font-size: 11px">problem id: 150_7</p>  
 
Show that the Hubble radius grows faster than the expanding Universe in the case of power law expansion $a(t)\propto t^\alpha$ with $\alpha<1$ (the decelerated expansion).
 
Show that the Hubble radius grows faster than the expanding Universe in the case of power law expansion $a(t)\propto t^\alpha$ with $\alpha<1$ (the decelerated expansion).
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 170: Line 170:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_015</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 15''' <p style= "color: #999;font-size: 11px">problem id: 150_015</p>  
 
Show, that in the Milne Universe the age of the Universe is equal to the Hubble time.
 
Show, that in the Milne Universe the age of the Universe is equal to the Hubble time.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 179: Line 179:
 
\paragraph{To chapter 4 The black holes}
 
\paragraph{To chapter 4 The black holes}
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: new2015_1</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 16''' <p style= "color: #999;font-size: 11px">problem id: new2015_1</p>  
 
see E. Berti, A Black-Hole Primer: Particles, Waves, Critical Phenomena and Superradiant  instabilities (arXiv:1410.4481[gr-qc])
 
see E. Berti, A Black-Hole Primer: Particles, Waves, Critical Phenomena and Superradiant  instabilities (arXiv:1410.4481[gr-qc])
  
Line 205: Line 205:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_017</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 17''' <p style= "color: #999;font-size: 11px">problem id: 150_017</p>  
 
Derive the relation $T\propto M^{-1}$ from the Heisenberg uncertainty principle and the fact that the size of a black hole is given by the Schwarzschild radius.
 
Derive the relation $T\propto M^{-1}$ from the Heisenberg uncertainty principle and the fact that the size of a black hole is given by the Schwarzschild radius.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 216: Line 216:
 
\paragraph{To chapter 8}
 
\paragraph{To chapter 8}
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 2501_06</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 18''' <p style= "color: #999;font-size: 11px">problem id: 2501_06</p>  
 
Why the cosmological constant cannot be used as a source for inflation in the inflation model?
 
Why the cosmological constant cannot be used as a source for inflation in the inflation model?
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 224: Line 224:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 2501_09</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 19''' <p style= "color: #999;font-size: 11px">problem id: 2501_09</p>  
 
Show that inflation ends when the parameter \[\varepsilon\equiv\frac{M_P^2}{16\pi}\left(\frac{dV}{d\varphi}\frac1V\right)^2=1.\]
 
Show that inflation ends when the parameter \[\varepsilon\equiv\frac{M_P^2}{16\pi}\left(\frac{dV}{d\varphi}\frac1V\right)^2=1.\]
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 241: Line 241:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 2501_10</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 20''' <p style= "color: #999;font-size: 11px">problem id: 2501_10</p>  
 
How does the number of e-folds $N$ depend on the slow-roll parameter $\varepsilon$?  
 
How does the number of e-folds $N$ depend on the slow-roll parameter $\varepsilon$?  
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 253: Line 253:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_021</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 21''' <p style= "color: #999;font-size: 11px">problem id: 150_021</p>  
 
Using the by dimensional analysis for cosmological constant $\Lambda > 0$, define the set of fundamental "de Sitter units" of length, time and mass.
 
Using the by dimensional analysis for cosmological constant $\Lambda > 0$, define the set of fundamental "de Sitter units" of length, time and mass.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 265: Line 265:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_022</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 22''' <p style= "color: #999;font-size: 11px">problem id: 150_022</p>  
 
In the Newtonian approximation, find the force acting on the point unit mass in the Universe filled by non-relativistic matter and cosmological constant. (see Chiu Man Ho and Stephen D. H. Hsu, The Dark Force: Astrophysical Repulsion from Dark Energy, arXiv: 1501.05592)
 
In the Newtonian approximation, find the force acting on the point unit mass in the Universe filled by non-relativistic matter and cosmological constant. (see Chiu Man Ho and Stephen D. H. Hsu, The Dark Force: Astrophysical Repulsion from Dark Energy, arXiv: 1501.05592)
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 293: Line 293:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_023</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 23''' <p style= "color: #999;font-size: 11px">problem id: 150_023</p>  
 
Consider a spatially flat FLRW Universe, which consists of two components: the non-relativistic matter and the scalar field $\varphi$ in the potential $V(\varphi)$. Find relation between the scalar field potential and the deceleration parameter.
 
Consider a spatially flat FLRW Universe, which consists of two components: the non-relativistic matter and the scalar field $\varphi$ in the potential $V(\varphi)$. Find relation between the scalar field potential and the deceleration parameter.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 310: Line 310:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_024</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 24''' <p style= "color: #999;font-size: 11px">problem id: 150_024</p>  
 
Find relation between the deceleration parameter and the derivative $d\varphi/dz$ for the Universe considered in the previous problem.
 
Find relation between the deceleration parameter and the derivative $d\varphi/dz$ for the Universe considered in the previous problem.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 323: Line 323:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: new_30</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 25''' <p style= "color: #999;font-size: 11px">problem id: new_30</p>  
 
Find the sound speed for the modified Chaplygin gas with the state equation \[p=B\rho-\frac A{\rho^\alpha}.\]
 
Find the sound speed for the modified Chaplygin gas with the state equation \[p=B\rho-\frac A{\rho^\alpha}.\]
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 334: Line 334:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_026</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 26''' <p style= "color: #999;font-size: 11px">problem id: 150_026</p>  
 
Let $N=\ln(a/a_0)$, where $a_0=a(t_0)$ and $t_0$ is some chosen reference time. Usually the reference time is the present time and in that case $\tau=-\ln(1+z)$. Find $\Omega_m(N)$ and $\Omega_\Lambda(N)$ for the SCM.
 
Let $N=\ln(a/a_0)$, where $a_0=a(t_0)$ and $t_0$ is some chosen reference time. Usually the reference time is the present time and in that case $\tau=-\ln(1+z)$. Find $\Omega_m(N)$ and $\Omega_\Lambda(N)$ for the SCM.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 345: Line 345:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_027</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 27''' <p style= "color: #999;font-size: 11px">problem id: 150_027</p>  
 
Express the cosmographic parameters $H,q,j$ as functions of $N=\ln a/a_0$ for the SCM.
 
Express the cosmographic parameters $H,q,j$ as functions of $N=\ln a/a_0$ for the SCM.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 365: Line 365:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas1</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 28''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas1</p>  
 
Show that once the new term dominates the right hand side of the Friedmann equation, we have accelerated expansion.
 
Show that once the new term dominates the right hand side of the Friedmann equation, we have accelerated expansion.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 377: Line 377:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas2</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 29''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas2</p>  
 
Let us represent the Cardassian model in the form
 
Let us represent the Cardassian model in the form
 
\[H^2\propto \rho+\rho_X,\quad\rho_X=\rho^n.\] Find the parameter $w_X$ of the EoS $p_X=w_X\rho_X$, assuming that the Universe is filled exclusively by the non-relativistic matter.
 
\[H^2\propto \rho+\rho_X,\quad\rho_X=\rho^n.\] Find the parameter $w_X$ of the EoS $p_X=w_X\rho_X$, assuming that the Universe is filled exclusively by the non-relativistic matter.
Line 386: Line 386:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas3</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 30''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas3</p>  
 
Show that the result obtained in the previous problem takes place for arbitrary one-component fluid with $w_X=const$.
 
Show that the result obtained in the previous problem takes place for arbitrary one-component fluid with $w_X=const$.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 397: Line 397:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas4</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 31''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas4</p>  
 
Generalize the previous problem for the case of two-component ideal liquid (non-relativistic matter $+$ radiation) with density $\rho=\rho_m+\rho_r$.
 
Generalize the previous problem for the case of two-component ideal liquid (non-relativistic matter $+$ radiation) with density $\rho=\rho_m+\rho_r$.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 409: Line 409:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas5</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 32''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas5</p>  
 
Show that we can interpret the Cardassian empirical term in the modified Friedmann equation as the superposition of  a quintessential fluid with $w=n-1$ and a background of dust.
 
Show that we can interpret the Cardassian empirical term in the modified Friedmann equation as the superposition of  a quintessential fluid with $w=n-1$ and a background of dust.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 421: Line 421:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas6</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 33''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas6</p>  
 
We have two parameters in the original Cardassian model: $B$ and $n$. Make the transition $\{B,n\}\to\{z_{eq},n\}$, where $z_{eq}$ is the redshift value at which the second term $B\rho^n$ starts to dominate.
 
We have two parameters in the original Cardassian model: $B$ and $n$. Make the transition $\{B,n\}\to\{z_{eq},n\}$, where $z_{eq}$ is the redshift value at which the second term $B\rho^n$ starts to dominate.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 442: Line 442:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas7</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 34''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas7</p>  
 
What is the current energy density of the Universe in the Cardassian model? Show that the corresponding energy density is much smaller than in the standard Friedmann cosmology, so that only matter can be sufficient to provide a flat geometry.
 
What is the current energy density of the Universe in the Cardassian model? Show that the corresponding energy density is much smaller than in the standard Friedmann cosmology, so that only matter can be sufficient to provide a flat geometry.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 464: Line 464:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas8</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 35''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas8</p>  
 
Let us represent the basic relation of Cardassian model in the following way
 
Let us represent the basic relation of Cardassian model in the following way
 
\[H^2=A\rho\left[1+\left(\frac\rho{\rho_{car}}\right)^{n-1}\right],\]
 
\[H^2=A\rho\left[1+\left(\frac\rho{\rho_{car}}\right)^{n-1}\right],\]
Line 474: Line 474:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas9</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 36''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas9</p>  
 
Let Friedmann equation is modified to be
 
Let Friedmann equation is modified to be
 
\[H^2=\frac{8\pi G}{3}g(\rho),\]
 
\[H^2=\frac{8\pi G}{3}g(\rho),\]
Line 495: Line 495:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas10</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 37''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas10</p>  
 
Find the speed of sound in the Cardassian model. [P.Gandolo, K. Freese, Fluid Interpretation of Cardassian Expansion, 0209322 ]
 
Find the speed of sound in the Cardassian model. [P.Gandolo, K. Freese, Fluid Interpretation of Cardassian Expansion, 0209322 ]
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 512: Line 512:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas11</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 38''' <p style= "color: #999;font-size: 11px">problem id: 150_cardas11</p>  
 
Find the deceleration parameter for the canonic Cardassian model.
 
Find the deceleration parameter for the canonic Cardassian model.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 540: Line 540:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_8</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 39''' <p style= "color: #999;font-size: 11px">problem id: 150_8</p>  
 
Consider a cosmological model in a flat Universe where the only component is a pressureless fluid with constant bulk viscosity ($\xi=const$). The pressureless fluid represent both the baryon and dark matter components. Find the dependence $\rho_m(z)$ for the considered model.
 
Consider a cosmological model in a flat Universe where the only component is a pressureless fluid with constant bulk viscosity ($\xi=const$). The pressureless fluid represent both the baryon and dark matter components. Find the dependence $\rho_m(z)$ for the considered model.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 554: Line 554:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_9</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 40''' <p style= "color: #999;font-size: 11px">problem id: 150_9</p>  
 
Find $H(z)$ and $a(t)$ for the model of Universe considered in the previous problem.
 
Find $H(z)$ and $a(t)$ for the model of Universe considered in the previous problem.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 570: Line 570:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_10</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 41''' <p style= "color: #999;font-size: 11px">problem id: 150_10</p>  
 
Analyze the expression for the scale factor $a(t)$ obtained in the previous problem for different types of the bulk viscosity.
 
Analyze the expression for the scale factor $a(t)$ obtained in the previous problem for different types of the bulk viscosity.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 593: Line 593:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_11</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 42''' <p style= "color: #999;font-size: 11px">problem id: 150_11</p>  
 
Show that the Universe in the considered model with $\xi=const$ had the Big Bang in the past for all values of the bulk viscosity in the interval $0<\bar\xi<3$ and determine how far in the past (in terms of the cosmic time) it happened.
 
Show that the Universe in the considered model with $\xi=const$ had the Big Bang in the past for all values of the bulk viscosity in the interval $0<\bar\xi<3$ and determine how far in the past (in terms of the cosmic time) it happened.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 604: Line 604:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_12</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 43''' <p style= "color: #999;font-size: 11px">problem id: 150_12</p>  
 
Show that the result of the previous Problem for zero bulk viscosity ($\xi=0$) correctly reproduces the lifetime of the matter-dominated Universe.
 
Show that the result of the previous Problem for zero bulk viscosity ($\xi=0$) correctly reproduces the lifetime of the matter-dominated Universe.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 612: Line 612:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_13</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 44''' <p style= "color: #999;font-size: 11px">problem id: 150_13</p>  
 
As we have seen in the previous problems, in the interval $0<\bar\xi<3$ the Universe begins with a Big-Bang followed by an eternal expansion and this expansion begins with a decelerated epoch followed by an eternal accelerated one. The transition between the decelerated-accelerated expansion epochs depends on the value of $\bar\xi$.  Find the value of the scale factor where the transition happens.
 
As we have seen in the previous problems, in the interval $0<\bar\xi<3$ the Universe begins with a Big-Bang followed by an eternal expansion and this expansion begins with a decelerated epoch followed by an eternal accelerated one. The transition between the decelerated-accelerated expansion epochs depends on the value of $\bar\xi$.  Find the value of the scale factor where the transition happens.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 625: Line 625:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_14</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 45''' <p style= "color: #999;font-size: 11px">problem id: 150_14</p>  
 
Analyze the dependence \[a_t=\left(\frac{3-\bar\xi}{2\bar\xi}\right)^{2/3},\] obtained in the previous problem.
 
Analyze the dependence \[a_t=\left(\frac{3-\bar\xi}{2\bar\xi}\right)^{2/3},\] obtained in the previous problem.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 639: Line 639:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_15</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 46''' <p style= "color: #999;font-size: 11px">problem id: 150_15</p>  
 
Find the deceleration parameter $q(a,\bar\xi)$ for the cosmological model presented in the Problem \ref{150_8}.
 
Find the deceleration parameter $q(a,\bar\xi)$ for the cosmological model presented in the Problem \ref{150_8}.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 655: Line 655:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_16</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 47''' <p style= "color: #999;font-size: 11px">problem id: 150_16</p>  
 
Analyze behavior of the deceleration parameter $q(a,\bar\xi)$ obtained in the previous problem for different values of the bulk viscosity $\bar\xi(\xi)$.
 
Analyze behavior of the deceleration parameter $q(a,\bar\xi)$ obtained in the previous problem for different values of the bulk viscosity $\bar\xi(\xi)$.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 672: Line 672:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_17</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 48''' <p style= "color: #999;font-size: 11px">problem id: 150_17</p>  
 
Use result of the problem \ref{150_15} to find the current value of the deceleration parameter and make sure that for $\bar\xi=1$ the transition from the decelerated to accelerated epochs of the Universe takes place today.
 
Use result of the problem \ref{150_15} to find the current value of the deceleration parameter and make sure that for $\bar\xi=1$ the transition from the decelerated to accelerated epochs of the Universe takes place today.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 684: Line 684:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_18</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 49''' <p style= "color: #999;font-size: 11px">problem id: 150_18</p>  
 
Find the curvature scalar $R(a,\xi)$ for the cosmological model presented in the Problem \ref{150_8}.
 
Find the curvature scalar $R(a,\xi)$ for the cosmological model presented in the Problem \ref{150_8}.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 697: Line 697:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_19</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 50''' <p style= "color: #999;font-size: 11px">problem id: 150_19</p>  
 
Let us consider a flat homogeneous and isotropic Universe filled by a fluid with bulk viscosity. We shall assume that the EoS for the fluid is $p=w\rho$, $w=const$ and that the viscosity coefficient $\xi(\rho)=\xi_0\rho^\nu$. Find the dependence $\rho(a)$ for the considered model.
 
Let us consider a flat homogeneous and isotropic Universe filled by a fluid with bulk viscosity. We shall assume that the EoS for the fluid is $p=w\rho$, $w=const$ and that the viscosity coefficient $\xi(\rho)=\xi_0\rho^\nu$. Find the dependence $\rho(a)$ for the considered model.
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
Line 712: Line 712:
  
  
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem ''' <p style= "color: #999;font-size: 11px">problem id: 150_0013</p>  
+
<div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 51''' <p style= "color: #999;font-size: 11px">problem id: 150_0013</p>  
 
Usually the inflationary models of the early Universe contain two distinct phases. During the first phase entropy of the Universe remains constant. The second phase is essentially non-adiabatic, particles are produced through the damping of the coherent oscillations of the inflaton field by coupling to other fields and by its subsequent decay. Find relation between the bulk viscosity and the entropy production [J. A. S. Lima, R. Portugal, I. Waga, Bulk viscosity and deflationary universes, arXiv:0708.3280].
 
Usually the inflationary models of the early Universe contain two distinct phases. During the first phase entropy of the Universe remains constant. The second phase is essentially non-adiabatic, particles are produced through the damping of the coherent oscillations of the inflaton field by coupling to other fields and by its subsequent decay. Find relation between the bulk viscosity and the entropy production [J. A. S. Lima, R. Portugal, I. Waga, Bulk viscosity and deflationary universes, arXiv:0708.3280].
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">
 
<div class="NavFrame collapsed">  <div class="NavHead">solution</div>  <div style="width:100%;" class="NavContent">

Revision as of 02:27, 19 June 2015

Problem 1

problem id: 150_0

Comprehensive explanations of the expanding Universe often use the balloon analogy. Although the balloon analogy is useful, one must guard against misconceptions that it can generate. Point out the misconceptions that appear when using this analogy [see M.O. Farooq, Observational constraints on dark energy cosmological model parameters, arXiv: 1309.3710.]


Problem 2

problem id: 150_1

(into the cosmography and extended deceleration parameter) Show that \[\frac{d\dot a}{da}=-Hq.\]


Problem 3

problem id: 150_2

Give a physical interpretation of the conservation equation.


Problem 4

problem id: 150_04

Find evolution equation for the density parameter $\Omega$ of the single-fluid FLRW models with the linear equation of state $p=w\rho$.


Problem 5

problem id: 150_05

Solve the previous problem for the multi-component case.


Problem 6

problem id: 150_06

Use the conformal time to prove existence of smooth transition from the radiation-dominated era to the matter dominated one.


Problem 7

problem id: 150_07

Consider a set of the cosmographic parameters built from the Hubble parameter and its time derivatives [see S. Carloni, A new approach to the analysis of the phase space of f(R)-gravity, arXiv:1505.06015) ] \[Q\equiv\frac{\dot H}{H^2},\quad J\equiv\frac{\ddot H H}{\dot H^2},\quad S\equiv\frac{\dddot H H^2}{\dot H^3},\ldots \] Express them in terms of the canonic cosmographic parameters $q,j,s\dots$.


Problem 8

problem id: 150_08

Consider another set of the cosmographic parameters [see S. Carloni, A new approach to the analysis of the phase space of f(R)-gravity, arXiv:1505.06015) ] \[\bar Q\equiv\frac{H_{,N}}{H},\quad \bar J\equiv\frac{H_{,NN}}{H},\quad \bar S\equiv\frac{H_{,NNN}}{H},\ldots,\] where \[H_{,N}\equiv \frac{dH}{d\ln a}.\] Express them in terms of the Hubble parameter and its time derivatives.


Problem 9

problem id: 150_09

Express the Ricci scalar and its time derivatives in terms of the $\bar Q$, $\bar J$ and $\bar S$.


Problem 10

problem id: 150_3

Show that for a perfect fluid with EoS $p=w(a)\rho$ the adiabatic sound speed can be represented in the form \[c_S^2=w(a)-\frac13\frac{d\ln(1+w)}{d\ln a}.\]


Problem 11

problem id: 150_4

Obtain equation for $\ddot\rho(t)$, where $\rho(t)$ is energy density of an ideal fluid participating in the cosmological expansion.


Problem 12

problem id: 150_5

Show that in the case of the flat Friedmann metric, the third power of the scale factor $\varphi\equiv a^3$ satisfies the equation \[\frac{d^2\varphi}{dt^2}=\frac32(\rho-p)\varphi,\quad 8\pi G=1.\] Check validity of this equation for different cosmological components: non-relativistic matter, cosmological constant and a component with EoS $p=w\rho$.


Problem 13

problem id: 150_6

The lookback time is defined as the difference between the present day age of the Universe and its age at redshift $z$, i.e. the difference between the age of the Universe at observation $t_0$ and the age of the Universe, $t$, when the photons were emitted. Find the lookback time for the Universe filled with non-relativistic matter, radiation and a component with the EoS $p=w(z)\rho$.


Problem 14

problem id: 150_7

Show that the Hubble radius grows faster than the expanding Universe in the case of power law expansion $a(t)\propto t^\alpha$ with $\alpha<1$ (the decelerated expansion).


\paragraph{To chapter 3, section 15, if absent}


Problem 15

problem id: 150_015

Show, that in the Milne Universe the age of the Universe is equal to the Hubble time.

\paragraph{To chapter 4 The black holes}

Problem 16

problem id: new2015_1

see E. Berti, A Black-Hole Primer: Particles, Waves, Critical Phenomena and Superradiant instabilities (arXiv:1410.4481[gr-qc])

A Newtonian analog of the black hole concept is a so-called "dark star". If we consider light as a corpuscle traveling at speed $c$, light cannot escape to infinity whenever $V_{esc}>c$, where \[V_{esc}^2=\frac{2GN}R.\] Therefore the condition for existence of "dark stars" in Newtonian mechanics is \[\frac{2GN}{c^2R}\ge1.\]

Can this condition be satisfied in the Newtonian mechanics?


Problem 17

problem id: 150_017

Derive the relation $T\propto M^{-1}$ from the Heisenberg uncertainty principle and the fact that the size of a black hole is given by the Schwarzschild radius.

\paragraph{To chapter 8}

Problem 18

problem id: 2501_06

Why the cosmological constant cannot be used as a source for inflation in the inflation model?


Problem 19

problem id: 2501_09

Show that inflation ends when the parameter \[\varepsilon\equiv\frac{M_P^2}{16\pi}\left(\frac{dV}{d\varphi}\frac1V\right)^2=1.\]


Problem 20

problem id: 2501_10

How does the number of e-folds $N$ depend on the slow-roll parameter $\varepsilon$?

paragraph{To chapter 9}


Problem 21

problem id: 150_021

Using the by dimensional analysis for cosmological constant $\Lambda > 0$, define the set of fundamental "de Sitter units" of length, time and mass.


Problem 22

problem id: 150_022

In the Newtonian approximation, find the force acting on the point unit mass in the Universe filled by non-relativistic matter and cosmological constant. (see Chiu Man Ho and Stephen D. H. Hsu, The Dark Force: Astrophysical Repulsion from Dark Energy, arXiv: 1501.05592)


Problem 23

problem id: 150_023

Consider a spatially flat FLRW Universe, which consists of two components: the non-relativistic matter and the scalar field $\varphi$ in the potential $V(\varphi)$. Find relation between the scalar field potential and the deceleration parameter.


Problem 24

problem id: 150_024

Find relation between the deceleration parameter and the derivative $d\varphi/dz$ for the Universe considered in the previous problem.


Problem 25

problem id: new_30

Find the sound speed for the modified Chaplygin gas with the state equation \[p=B\rho-\frac A{\rho^\alpha}.\]

(a couple of problems for the SCM:)


Problem 26

problem id: 150_026

Let $N=\ln(a/a_0)$, where $a_0=a(t_0)$ and $t_0$ is some chosen reference time. Usually the reference time is the present time and in that case $\tau=-\ln(1+z)$. Find $\Omega_m(N)$ and $\Omega_\Lambda(N)$ for the SCM.


Problem 27

problem id: 150_027

Express the cosmographic parameters $H,q,j$ as functions of $N=\ln a/a_0$ for the SCM.


paragraph{Cardassian Model} [K. Freese and M. Lewis, Cardassian Expansion: a Model in which the Universe is Flat, Matter Dominated, and Accelerating, arXiv: 0201229] is a modification to the Friedmann equation in which the Universe is flat, matter dominated, and accelerating. An additional term, which contains only matter or radiation (no vacuum contribution), becomes the dominant driver of expansion at a late epoch of the universe. During the epoch when the new term dominates, the universe accelerates. The authors named this period of acceleration by the Cardassian era. (The name Cardassian refers to a humanoid race in Star Trek whose goal is to take over the universe, i.e., accelerated expansion. This race looks foreign to us and yet is made entirely of matter.) Pure matter (or radiation) alone can drive an accelerated expansion if the first Friedmann equation is modified by the addition of a new term on the right hand side as follows: \[H^2=A\rho+B\rho^n,\] where the energy density $\rho$ contains only ordinary matter and radiation, and $n<2/3$. In the usual Friedmann equation $B=0$. To be consistent with the usual result, we take \[A=\frac{8\pi}{3M_{Pl}^2},\] where $M_{Pl}^2\equiv1/G$.


Problem 28

problem id: 150_cardas1

Show that once the new term dominates the right hand side of the Friedmann equation, we have accelerated expansion.


Problem 29

problem id: 150_cardas2

Let us represent the Cardassian model in the form \[H^2\propto \rho+\rho_X,\quad\rho_X=\rho^n.\] Find the parameter $w_X$ of the EoS $p_X=w_X\rho_X$, assuming that the Universe is filled exclusively by the non-relativistic matter.


Problem 30

problem id: 150_cardas3

Show that the result obtained in the previous problem takes place for arbitrary one-component fluid with $w_X=const$.


Problem 31

problem id: 150_cardas4

Generalize the previous problem for the case of two-component ideal liquid (non-relativistic matter $+$ radiation) with density $\rho=\rho_m+\rho_r$.


Problem 32

problem id: 150_cardas5

Show that we can interpret the Cardassian empirical term in the modified Friedmann equation as the superposition of a quintessential fluid with $w=n-1$ and a background of dust.


Problem 33

problem id: 150_cardas6

We have two parameters in the original Cardassian model: $B$ and $n$. Make the transition $\{B,n\}\to\{z_{eq},n\}$, where $z_{eq}$ is the redshift value at which the second term $B\rho^n$ starts to dominate.


Problem 34

problem id: 150_cardas7

What is the current energy density of the Universe in the Cardassian model? Show that the corresponding energy density is much smaller than in the standard Friedmann cosmology, so that only matter can be sufficient to provide a flat geometry.


Problem 35

problem id: 150_cardas8

Let us represent the basic relation of Cardassian model in the following way \[H^2=A\rho\left[1+\left(\frac\rho{\rho_{car}}\right)^{n-1}\right],\] where $\rho_{car}=\rho(z_{eq})$ is the energy density at which the two terms are equal. Find the function $\rho(z_{eq})$ under assumption that the Universe is filled with non-relativistic matter and radiation.


Problem 36

problem id: 150_cardas9

Let Friedmann equation is modified to be \[H^2=\frac{8\pi G}{3}g(\rho),\] where $\rho$ consists only of non-relativistic matter. Find the effective total pressure.


Problem 37

problem id: 150_cardas10

Find the speed of sound in the Cardassian model. [P.Gandolo, K. Freese, Fluid Interpretation of Cardassian Expansion, 0209322 ]


Problem 38

problem id: 150_cardas11

Find the deceleration parameter for the canonic Cardassian model.


\paragraph{Models with Cosmic Viscosity} A Universe filled with a perfect fluid represents quite a simple which seems to be in good agreement with cosmological observations. But, on a more physical and realistic basis we can replace the energy-momentum tensor for the simplest perfect fluid by introducing cosmic viscosity. The energy momentum tensor with bulk viscosity is given by \[T_{\mu\nu}=(\rho=p-\xi\theta)u_\mu u_\nu+(p-\xi\theta)g_{\mu\nu},\] where $\xi$ is bulk viscosity, and $\theta\equiv3H$ is the expansion scalar. This modifies the equation of state of the cosmic fluid. The Friedmann equations with inclusion of the bulk viscosity, i.e. using the energy-momentum tensor $T_{\mu\nu}$, read \begin{align} \nonumber \frac{\dot a^2}{a^2}&=\frac13\rho,\quad \rho=\rho_m+\rho_\Lambda,\quad 8\pi G=1;\\ \nonumber \frac{\ddot a^2}{a}&=-\frac16(\rho+3p-9\xi H). \end{align} {\it Problems \ref{150_8}-\ref{150_14} are inspired by A. Avelino and U. Nucamendi, Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe? arXiv:0811.3253} \begin{enumerate} <div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 39''' <p style="color: #999;font-size: 11px">problem id: 150_8</p> Consider a cosmological model in a flat Universe where the only component is a pressureless fluid with constant bulk viscosity (UNIQ-MathJax149-QINU). The pressureless fluid represent both the baryon and dark matter components. Find the dependence UNIQ-MathJax150-QINU for the considered model. <div class="NavFrame collapsed"> <div class="NavHead">solution</div> <div style="width:100%;" class="NavContent"> <p style="text-align: left;"> The conservation equation in terms of the scale factor and the first Friedmann equation are UNIQ-MathJax324-QINU UNIQ-MathJax325-QINU Here UNIQ-MathJax151-QINU is total density of the baryon and dark matter components. Having excluded the Hubble parameter and changed the independent variable from the scale factor UNIQ-MathJax152-QINU to the redshift UNIQ-MathJax153-QINU, one finds UNIQ-MathJax326-QINU The solution of this equation is: UNIQ-MathJax327-QINU </p> </div></div></div> <div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 40''' <p style="color: #999;font-size: 11px">problem id: 150_9</p> Find UNIQ-MathJax154-QINU and UNIQ-MathJax155-QINU for the model of Universe considered in the previous problem. <div class="NavFrame collapsed"> <div class="NavHead">solution</div> <div style="width:100%;" class="NavContent"> <p style="text-align: left;"> Substitute the solution UNIQ-MathJax156-QINU obtained in the previous problem into the first Friedmann equation to obtain UNIQ-MathJax328-QINU In the considered model the bulk viscous matter is the only component of the flat Universe. Consequently, UNIQ-MathJax157-QINU and one finally obtains UNIQ-MathJax329-QINU The obtained expression allows to write the scale factor in terms of the cosmic time. Let us transform the expression for the Hubble parameter UNIQ-MathJax330-QINU to the following form UNIQ-MathJax331-QINU For UNIQ-MathJax158-QINU and UNIQ-MathJax159-QINU (UNIQ-MathJax160-QINU implies UNIQ-MathJax161-QINU and contradicts the observations) one finds UNIQ-MathJax332-QINU </p> </div></div></div> <div id=""></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 41''' <p style="color: #999;font-size: 11px">problem id: 150_10</p> Analyze the expression for the scale factor UNIQ-MathJax162-QINU obtained in the previous problem for different types of the bulk viscosity. <div class="NavFrame collapsed"> <div class="NavHead">solution</div> <div style="width:100%;" class="NavContent"> <p style="text-align: left;"> \begin{enumerate} \item UNIQ-MathJax163-QINU When UNIQ-MathJax164-QINU then the obtained solution reproduces the de Sitter-like Universe, UNIQ-MathJax333-QINU \item UNIQ-MathJax165-QINU In this case the considered model exactly reproduces the de Sitter-like Universe, UNIQ-MathJax334-QINU The model predicts an Universe in an eternal accelerated expansion. \item UNIQ-MathJax166-QINU In this case the Universe expands forever (decelerated expansion epoch is absent). \end{enumerate}