Difference between revisions of "New from march"

From Universe in Problems
Jump to: navigation, search
(Created page with "__TOC__ <p style= "color: #999;font-size: 14px">New from March-2015</p> <div id="2501_01"></div> <div style="border: 1px solid #AAA; padding:5px;"> '''Problem 1''' <p st...")
 
 
Line 487: Line 487:
  
  
 +
<div id="f_r_7"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 7'''
 +
<p style= "color: #999;font-size: 11px">problem id: f_r_7</p>
 +
Let $f(R)\propto R^n$. Find $w_{eff}$ as a function of $n$ assuming the power law dependence for the scale factor $a(t)=a_0(t/t_0)^\alpha$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The result for $n\ne1$ is \[w_{eff}=-\frac{6n^2-7n+1}{6n^2-9n+3},\] and $\alpha$ in terms of $n$ reads \[\alpha=\frac{-2n^2+3n-1}{n-2}.\] Appropriate choice of $n$ leads to desired value of $w_{eff}$. for example $n=2$ leads to $w_{eff}=-1$, $\alpha=\infty$. Arbitrary dependence $a(t)$ would result in time dependence of $w_{eff}$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="f_r_8"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 8'''
 +
<p style= "color: #999;font-size: 11px">problem id: f_r_8</p>
 +
Let the function \[f(R)=R-\frac{\mu^{2(n+1)}}{R^n}.\] Find $w_{eff}$ as a function of $n$ assuming the power law dependence for the scale factor $a(t)=a_0(t/t_0)^\alpha$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[w_{eff}=-1+\frac{2(n+2)}{3(2n+1)(n+1).}\]
 +
In particular, for $n=1$ one finds that $w_{eff}=-2/3$ (accelerated expansion). Note that in this case positive values of $n$ imply presence of terms inversely proportional to $R$, in contrast to the case considered in the previous problem.</p>
 +
  </div>
 +
</div></div>
 +
 +
<div id="f_r_9"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 9'''
 +
<p style= "color: #999;font-size: 11px">problem id: f_r_9</p>
 +
Show that \[\frac{dq}{d\ln(1+z)}=j-q(2q+1).\]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id="f_r_13"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 13'''
 +
<p style= "color: #999;font-size: 11px">problem id: f_r_13</p>
 +
Show that characteristic size of the large scale structures is set by actual value of the cosmological constant.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Let us show an important consequence of the formula
 +
\begin{equation}\label{12_1}
 +
F=-\frac m{R^2}-q(t)H^2(t)R.
 +
\end{equation}
 +
Consider a Universe, which contains no matter (or radiation), but only dark energy in the form of a non-zero cosmological constant $\Lambda$. In this case, the Hubble parameter and, hence, the deceleration parameter become time-independent and are given by $H=\sqrt{\Lambda/3}$ and $q=-1$. Thus, the force (\ref{12_1}) also becomes time-independent,
 +
\begin{equation}\label{12_3}
 +
F=-\frac m{r^2}+\frac13\Lambda r.
 +
\end{equation}
 +
For the case of spatially finite (i.e. non-pointlike) spherically-symmetric massive objects (12.3) is replaced by
 +
\begin{equation}\label{12_4}
 +
F=-\frac{M(r)}{r^2}+\frac13\Lambda r,
 +
\end{equation}
 +
where $M(r)$ is the total mass of the object contained within the radius $r$. If the object has the radial density $\rho(r)$ then \[M(r)=\int\limits_0^r4\pi r'^2\rho(r')dr'.\]
 +
 +
Although the de Sitter background is not an accurate representation of our Universe, the SCM is dominated by dark-energy in a form consistent with a simple cosmological constant.  Even in the simple Newtonian case (\ref{12_4}), we see immediately that there is an obvious, but profound, difference between the cases $\Lambda=0$ and $\Lambda\ne0$. In the former, the force on a constituent particle of a galaxy or cluster (say) is attractive for all values of $r$ and tends gradually to zero as $r\to\infty$ (for any sensible radial density profile). In the latter case, however, the force on a constituent particle (or equivalently its radial acceleration) vanishes at the finite radius $r_F$ which satisfies $r_F=[3M(R_F)/\Lambda]^{1/3}$, beyond which the net force becomes repulsive. This suggests that a non-zero $\Lambda$ should set a maximum size, dependent on mass, for galaxies and clusters.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="f_r_14"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 14'''
 +
<p style= "color: #999;font-size: 11px">problem id: f_r_14</p>
 +
Inverse problem to the previous one: find upper bound for the cosmological constant $\Lambda9r)$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
--------------------
 +
 +
 +
<div id="1301_38"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 1'''
 +
<p style= "color: #999;font-size: 11px">problem id: 1301_38</p>
 +
(Inspired by 1. M. Dunajski,  G. Gibbons, Cosmic Jerk, Snap and Beyond, arXiv: 0807.0207)
 +
 +
Express the curvature parameter $k$ terms of the cosmographic parameters for the case of Universe filled with non-interacting cosmological constant and non-relativistic matter.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Using the relation $\rho_m=M/a^3$ ($M=const$) we rewrite the first Friedmann equation in the form
 +
\begin{equation}\label{1301_38_e1} \dot a^2+k=\frac13\frac M a+\frac13\Lambda a,\quad 8\pi G=1.\end{equation}
 +
Then we differentiate the latter equation two times to find
 +
\begin{align}
 +
\label{1301_38_e2} \ddot a=&-\frac16\frac M{a^2}=\frac13\Lambda a,\\
 +
\nonumber \dddot a=&-\frac13\frac{M\dot a}{a^3}=\frac13\Lambda\dot a.
 +
\end{align}
 +
Using the definitions of the cosmographic parameters
 +
\[H=\frac{\dot a}{a},\quad q=-a\frac{\ddot a}{\dot a^2},\quad j=a^2\frac{\dddot a}{\dot a^3},\] we represent (\ref{1301_38_e1}) in the form
 +
\begin{align}
 +
\nonumber q &= \frac12A-B;\\
 +
\nonumber j &= A+B;\\
 +
\nonumber A &\equiv\frac13 \frac{M}{a^3H^2};\\
 +
\nonumber B &\equiv\frac13 \frac{\Lambda}{H^2}.
 +
\end{align}
 +
Then we find
 +
\begin{align}
 +
\nonumber A &=\frac23(j+q);\\
 +
\nonumber B &=\frac23(\frac12j-q).
 +
\end{align}
 +
The Friedmann equation (\ref{1301_38_e1}) in terms of the above introduced variables $A$ and $B$ takes on the form \[\frac k{a^2}=(A+B-1)H^2\] or \[k=a^2H^2(j-1).\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="1301_39"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 2'''
 +
<p style= "color: #999;font-size: 11px">problem id: 1301_39</p>
 +
Do the same as in the previous problem for the case of Universe filled with non-interacting non-relativistic matter $\rho_m=M_m/a^3$ and radiation $\rho_r=M_r/a^4$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">We represent the first Friedmann equation in the form
 +
\begin{equation}\label{1301_39_e1} \frac{\dot a^2}{a^2}+\frac k{a^2}=\frac{M_m}{a^3}+\frac{M_r}{a^4},\quad \frac{8\pi G}{3}=1.\end{equation}
 +
We twice differentiate the latter equation to find
 +
\begin{align}
 +
\label{1301_39_e2} \ddot a=&-\frac12\frac{M_m}{a^2}-\frac{M_r}{a^3},\\
 +
\nonumber \dddot a=&\frac{M_m}{a^3}\dot a+3\frac{M_r}{a^4}\dot a.
 +
\end{align}
 +
Using definitions of the cosmographic parameters $q$ and $j$, one obtains
 +
\begin{align}
 +
\nonumber q &= \frac12A+B;\\
 +
\nonumber j &= A+3B;\\
 +
\nonumber A &\equiv\frac{M_m}{a^3H^2};\\
 +
\nonumber B &\equiv\frac{M_r}{a^4H^2}.
 +
\end{align}
 +
Then we find
 +
\begin{align}
 +
\nonumber A &=-2j+6q;\\
 +
\nonumber B &=j-2q.
 +
\end{align}
 +
The Friedmann equation (\ref{1301_39_e1}) in terms of the above introduced variables $A$ and $B$ takes on the form \[\frac k{a^2}=(A+B-1)H^2\] or in terms of the cosmographic parameters \[k=a^2H^2(4q-j-1).\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="1301_40"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 3'''
 +
<p style= "color: #999;font-size: 11px">problem id: 1301_40</p>
 +
Check the expressions for the curvature $k$ obtained in the previous problem for two cases: a) a flat Universe solely filled with non-relativistic matter; b) a flat Universe solely filled with radiation.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">In the first case $B=0$, $q=1/2$. Then $A=1$ and $k=0$. Note that in this case $j=1$.
 +
 +
In the second case $A=0$, $q=1$. Then $B=1$, $k=0$. In that case $j=3$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="1301_41"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 4'''
 +
<p style= "color: #999;font-size: 11px">problem id: 1301_41</p>
 +
Find relation between the cosmographic parameters free of any cosmological parameter for the case of Universe considered in the problem [[#1301_38]].
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Using expression for $\dddot a$ obtained in the problem \ref{1301_38}, one finds
 +
\[\ddddot a=\frac M3\frac{\ddot a}{a^3}-M\frac{\dot a^2}{a^4}+\frac\Lambda3\ddot a.\]
 +
For the snap parameter \[s\equiv a^3\frac{\ddddot a}{\dot a^4}\] one obtains \[s=-3(A+B)q-3A.\]
 +
Substitution of the parameters
 +
\begin{align}
 +
\nonumber A &=\frac23(j+q);\\
 +
\nonumber B &=\frac23(\frac12j-q).
 +
\end{align}
 +
introduced in the problem \ref{1301_38}, one finally finds
 +
\[s+2(q+j)+qj=0.\]
 +
This fourth order ODE is equivalent to the Friedmann equation and has an advantage that it  appears as a constraint on directly measurable quantities.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="1301_42"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 5'''
 +
<p style= "color: #999;font-size: 11px">problem id: 1301_42</p>
 +
Perform the same procedure for the Chaplygin gas with the equation of state $p=-A/\rho$ and for the generalized Chaplygin gas with the equation of state $\rho=-A/\rho^\alpha$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">For small values of $a(t)$ density and pressure of the Chaplygin gas reduces to that of dust $\rho\propto a^{-3}$, and for large $a$ one gets the de Sitter Universe: $\rho=const$, $p=-\rho$. In between these two regimes one can use the approximation
 +
\begin{equation}\label{scalar_5}\rho=\sqrt A+\frac{B}{\sqrt{2A}}a^{-6}.\end{equation}
 +
Thus $\sqrt A$ plays the role of a cosmological constant. We insert this to the Friedmann equation with $\Lambda$ and follow the procedure of eliminating the constants by differentiation. This leads to an approximate constraint
 +
\begin{equation}\label{scalar_6}s+5(q+j)+qj=0.\end{equation}
 +
 +
Analogous procedure for the generalized Chaplygin gas leads to the equation
 +
\begin{equation}\label{scalar_7}s+(3\alpha+2)(q+j)+qj=0.\end{equation}
 +
Note that for $\alpha=1$ we reproduce the above obtained result for the Chaplygin gas, while $\alpha=0$ we return to the results obtained in the problem (\ref{1301_41}).
 +
 +
If we want to exclude the parameter $\alpha$ from the latter equation we must take one more derivative of the Friedmann equation and introduce an additional cosmological parameter \[l=\frac1a\frac{d^5a}{dt^5}\left(\frac1a\frac{da}{dt}\right)^{-5}.\] As a result one obtains
 +
\begin{equation}\label{scalar_8}
 +
-2qs-2jq^2-lq-2sj-3sq^2-j^2q-lj+s^2-3q^2j-qsj+j^3-2j^2q^2=0.
 +
\end{equation}
 +
This constraint is again approximate and is valid only in the regime where the higher order terms in the expansion of $\rho$ can be dropped.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
-------------------------
 +
 +
 +
 +
<div id="new_22"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 1'''
 +
<p style= "color: #999;font-size: 11px">problem id: new_22</p>
 +
It is of broad interest to understand better the nature of the early Universe especially the Big Bang. The discovery of the CMB in 1965 resolved a dichotomy then existing in theoretical cosmology between steady-state and Big Bang theories. The interpretation of the CMB as a relic of a Big Bang was compelling and the steady-state theory died. Actually at that time it was really a trichotomy being reduced to a dichotomy because a third theory is a cyclic cosmology model. Find the main argument again the latter theory.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The main argument of the opponents to the cyclic model of Universe was based on the so-called Tolman Entropy Conundrum (R.C. Tolman, Relativity, Thermodynamics and Cosmology. Oxford University Press (1934)): the entropy of the Universe necessarily increases, due to the second law of thermodynamics, and therefore cycles become larger and longer in the future, smaller and shorter in the past, implying that a Big Bang must have occurred at A FINITE time in the past.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="new_26"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 2'''
 +
<p style= "color: #999;font-size: 11px">problem id: new_26</p>
 +
In 1881, Johnson Stoney proposed a set of fundamental units involving $c$, $G$ and $e$. Build the Stoney's natural units of length, mass and time.
 +
\begin{align}
 +
\nonumber L_S&=\left(\frac{Ge^2}{c^4}\right)^{1/2};\\
 +
\nonumber M_S&=\left(\frac{e^2}{G}\right)^{1/2};\\
 +
\nonumber T_S&=\left(\frac{Ge^2}{c^6}\right)^{1/2};
 +
\end{align}
 +
Show that the fine structure constant $\alpha=e^2/(\hbar c)$ can be used to convert between Stoney and Planck units.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{align}
 +
\nonumber L_S&=L_{Pl}\alpha^{1/2};\\
 +
\nonumber M_S&=M_{Pl}\alpha^{1/2};\\
 +
\nonumber T_S&=T_{Pl}\alpha^{1/2};
 +
\end{align}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="new_27"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem 3'''
 +
<p style= "color: #999;font-size: 11px">problem id: new_27</p>
 +
Find dimensions of the Newtonian gravitational constant $G$ and charge $e$ in the $N$-dimensional space.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">By Gauss's theorem we have $[G]=L^NM^{-1}T^{-2}$; $[e^2]=L^NMT^{-2}$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
''The value $c^4/(4G)$ of the force limit is the energy of a Schwarzschild black hole divided by twice its radius. The maximum power $c^5/(4G)$  is realized when such a black hole is radiated away in the time that light takes to travel along a length corresponding to twice the radius. It will become clear below why a Schwarzschild black hole, as an extremal case of general relativity, is necessary to realize these limit values. (General relativity and cosmology derived from principle of maximum power or force Christoph Schiller  (0607090))''
 +
 +
 +
<div id="new_28"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: new_28</p>
 +
Consider n-dimensional homogeneous and isotropic Universe, filled with two non-interacting components: the cosmological constant and a component with the state equation $p_m=w\rho_m$. Express the curvature parameter $k$ through the cosmographic parameters.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Evolution of the considered universe is described by the equations
 +
\[H^2=\frac2{n(n-1)}\rho-\frac k{a^2},\quad 8\pi G=1,\]
 +
\[\rho=\rho_m+\Lambda,\]
 +
\[\dot\rho_m+nH(\rho_m+p_m)=0.\]
 +
Using the conservation equation one finds
 +
\[\rho=\rho_0a^{-n(1+w)}+\Lambda.\]
 +
The first Friedmann equation then takes on the form
 +
\[\dot a^2=\frac2{n(n-1)}\rho_0a^{-n(1+w)+2}+\frac{2\Lambda}{n(n-1)}a^2-k.\]
 +
In the notions
 +
\[-n(1+w)\equiv N,\quad \frac2{n(n-1)}=M\]
 +
the Friedmann equation reads
 +
\begin{equation}\label{new_28_e_1}
 +
\dot a^2=M\rho_0a^{N+2}+M\Lambda a^2-k.
 +
\end{equation}
 +
Differentiation of the latter equation gives
 +
\begin{align}\label{new_28_e_2}
 +
\ddot a&=\frac12M\rho_0(N+2)a^{N+1}+M\Lambda a;\\
 +
\nonumber\dddot a&=\frac{(N+1)(N+2)}2M\rho_0a^N\dot a+M\Lambda\dot a.
 +
\end{align}
 +
Transforming to the cosmographic parameters, one gets
 +
\begin{align}\label{new_28_e_3}
 +
q&\equiv-\frac{\ddot a a}{\dot a^2}=-\frac12M\rho_0(N+2)\frac{a^N}{H^2}-\frac{M\Lambda}{H^2},\\
 +
\nonumber j&\equiv\frac{\dddot a a^2}{\dot a^3}=\frac{(N+1)(N+2)}2M\rho_0(N+2)\frac{a^N}{H^2}+\frac{M\Lambda}{H^2}.
 +
\end{align}
 +
Using the notions
 +
\[A\equiv-M\rho_0(N+2)\frac{a^N}{H^2},\quad B\equiv\frac{M\Lambda}{H^2},\]
 +
the equation (\ref{new_28_e_3}) can be presented in the form
 +
\begin{align}\label{new_28_e_4}
 +
q&=\frac12A-B,\\
 +
\nonumber j&=-\frac{N+1}2A+B.
 +
\end{align}
 +
It then follows that
 +
\begin{equation}\label{new_28_e_5}
 +
A=-\frac2N(q+j),\quad B=-\frac1N[(N+1)q+j].
 +
\end{equation}
 +
The first Friedmann equation in terms of the parameters $A$ and $B$ becomes
 +
\begin{equation}\label{new_28_e_6}
 +
\frac{k}{a^2H^2}=-\frac1{N+2}A+B-1,
 +
\end{equation}
 +
or transforming to the cosmographic parameters $q$ and $j$
 +
\begin{equation}\label{new_28_e_7}
 +
k=a^2H^2\left\{\frac2{N(N+2)}(q+j)-\frac1N\left[(N+1)q+j\right]-1\right\},
 +
\end{equation}
 +
For $n=3$, $w=0$ ($N=-3$) the obtained relation for spatial curvature reduces to
 +
\[k=a^2H^2(j-1),\]
 +
which reproduces result of the problem [[#1301_38]].</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="new_29"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: new_29</p>
 +
Find relation between the cosmographic parameters free of any cosmological parameter for the case of Universe considered in the previous problem.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Using the relation for $\dddot a$ obtained in the previous problem, one finds
 +
\[\ddddot a=\frac{N(N+1)(N+2)}2M\rho_0a^{N-1}\dot a^2+\frac{(N+1)(N+2)}2M\rho_0a^{N}\ddot a+M\Lambda\ddot a.\]
 +
Using the definition \[s=\frac{a^3}{\dot a^4}\ddddot a\] we obtain
 +
\[s=\left(\frac{N+1}2A-B\right)q-\frac{N(N+1)}{2}A,\]
 +
where $A$ and $B$ are defined in the previous problem. Transforming to the cosmographic parameters, the latter relation can be presented in the form
 +
\[s-\left\{\frac2N(q+j)+\frac1N[(N+1)q+j]q-\frac6N(q+j)\right\}=0.\]
 +
For $N=-3$ the obtained result reproduces that of the problem [[#1301_41]].</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="new_30"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: new_30</p>
 +
Find the sound speed for the modified Chaplygin gas with the state equation \[p=B\rho-\frac A{\rho^\alpha}.\]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[c_s^2=\frac{\delta p}{\delta\rho}=\frac{\dot p}{\dot\rho}=-\alpha w+(1+\alpha)B,\quad w=\frac p\rho.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
<!--
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
Line 499: Line 859:
 
</div></div>
 
</div></div>
  
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
'''Problem '''
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
  
 
<div id=""></div>
 
<div id=""></div>

Latest revision as of 22:37, 6 April 2015


New from March-2015


Problem 1

problem id: 2501_01

Show that the luminosity distance can be in general presented in the following form \[d_L=\frac{1+z}{H_0\sqrt{\Omega_{k0}}}\sinh\left({H_0\sqrt{\Omega_{k0}}}\int\limits_0^z\frac{dz}{H(z)}\right),\] where $\Omega_{k0}$ is relative contribution of the space curvature.


Problem 2

problem id: 2501_02

Give physical interpretation of the conservation equation \[\dot{\rho}+3(\rho+p)H=0.\]


Problem 3

problem id: 2501_03

Show that for both case of matter and radiation domination, the acceleration $\ddot a$ slows as the scale factor grows.


Problem 4

problem id: 2501_04

Obtain relation between the cosmological and conformal time for the Universe dominated by matter, radiation and cosmological constant respectively.}


Problem 5

problem id: 2501_05

Show that for the power-paw expansion $a(t)\propto t^\alpha$ with $\alpha<1$ (decelerated expansion) the Hubble radius grows faster than the Universe expands.


Problem 6

problem id: 2501_06

Why the cosmological constant cannot be used as a source for inflation in the inflation model?


Problem 7

problem id: 2501_07

Derive the following formula \[\Delta v\equiv\frac{\Delta z}{1+z}=H_0\Delta t_o \left[1-\frac{E(z)}{1+z}\right].\]


Problem 9

problem id: 2501_09

Show that inflation ends when the parameter \[\varepsilon\equiv\frac{M_P^2}{16\pi}\left(\frac{dV}{d\varphi}\frac1V\right)^2=1.\]


Problem 10

problem id: 2501_10

How does the number of e-folds $N$ depend on the slow-roll parameter $\varepsilon$?


Problem 11

problem id: 2501_11

The exponential increase in $a(t)$ (during the inflation) drastically reduces the temperature since $Ta$ is a constant. After the field disappears, the Universe will need to re-heat to the high temperatures needed to create the light nuclei whose relative abundance is predicted by BB cosmology and is a major success of the BB model.


Problem 17

problem id: 2501_17

Suppose that $dq/dt=f(q)$. Find the Hubble parameter in terms of $q$.


Problem 18

problem id: 2501_18

Show that derivative w.r.t. the cosmic time can be related to that w.r.t. redshift as follows: \[\frac1{f(t)}\frac{df(t)}{dt}=-(1+z)H(z)\frac1{f(z)}\frac{df(z)}{dz}.\]


New in Observational Cosmology

Problem 1

problem id: 2501_01o

Obtain relations between velocity of cosmological expansion and redshift.


Problem 2

problem id: 2501_02o

Why the Linear Distance-Redshift Law in Near Space?


Problem 3

problem id: 2501_03o

Find the exact relativistic Doppler velocity-redshift relation.


NEW 2

Problem 1

problem id: new2015_3

The lookback time is defined as the difference between the present day age of the Universe and its age at redshift $z$, i.e. the difference between the age of the Universe at observation $t_0$ and the age of the Universe, $t$, when the photons were emitted. Find the lookback time for the Universe filled with non-relativistic matter, radiation and a component with state equation $p=w(z)\rho$.


Problem 2

problem id: new2015_4

Find the solutions corrected by LQC Friedmann equations for a matter dominated Universe.


Problem 3

problem id: new2015_5

Show that in the case of the flat Friedmann metric, the third power of the scale factor $\varphi=a^3$ satisfies the equation \[\frac{d^2\varphi}{dt^2}=\frac32(\rho-p)\varphi,\quad 8\pi G=1.\] Check validity of this equation for different cosmological components: non-relativistic matter, cosmological constant, a component with the state equation $p=w\rho$.




$f(R)$ gravity theory is built by direct generalization of the Einstein-Hilbert action with the substitution $R\to f(R)$. The new action is \[S=\frac1{2\kappa}\int d^4x\sqrt{-g}f(R)+S_m(g_{\mu\nu},\psi);\quad \kappa\equiv8\pi G.\] Here $\psi$ is general notion for the matter fields. The chosen generalization contains function $f(R)$ which depends solely on the Ricci scalar $R$, but it does not include other invariants such as $R_{\mu\nu}R^{\mu\nu}$. The reason of that is the following: the action $f(R)$ is sufficiently general to reflect basic features of gravity, and at the same time it is simple enough so that the calculations present no technical difficulty. The function $f(R)$ must satisfy the stability conditions \[f'(R)>0,\quad f''(R)>0.\]



Problem 1

problem id: f_r_1

Obtain field equations for the $f(R)$ gravity.


Problem 2

problem id: f_r_2

Obtain equation relating the scalar curvature $R$ with trace of the stress-energy tensor.


Problem 3

problem id: f_r_3

Solutions with $R=const$ are called the maximally symmetric. Show that in the case $R=0$, $T_{\mu\nu}=0$ the maximally symmetric solution is the Minkowski space, and in the case $R=const\equiv C$, $T_{\mu\nu}=0$ the maximally symmetric solution coincides with the de- Sitter or anti-de Sitter depending on sign of $C$.


Problem 4

problem id: f_r_4

Use the FLRW metrics and the stress-energy tensor for an ideal liquid to obtain an analogue of the Friedmann equations for the $f(R)$ cosmology.


Problem 5

problem id: f_r_5

Show that introduction of effective energy density \[\rho_{eff}=\frac{Rf'-f}{2f'}-\frac{3H\dot Rf''}{f'}\] and effective pressure \[p_{eff}=\frac{\dot R^2f'''+2H\dot Rf''+\ddot Rf''+\frac12(f-Rf')}{f'}\] allows to represent the equations obtained in the previous problem in form of the standard Friedmann equations \begin{align} \nonumber H^2&=\frac\kappa3\rho_{eff};\\ \nonumber \frac{\ddot a}a&=-\frac\kappa6\left(\rho_{eff}+3p_{eff}\right). \end{align}


Problem 6

problem id: f_r_6

What condition must the function $f(R)$ satisfy to in order to make \[w_{eff}\equiv\frac{p_{eff}}{\rho_{eff}}=-1?\]


Problem 7

problem id: f_r_7

Let $f(R)\propto R^n$. Find $w_{eff}$ as a function of $n$ assuming the power law dependence for the scale factor $a(t)=a_0(t/t_0)^\alpha$.


Problem 8

problem id: f_r_8

Let the function \[f(R)=R-\frac{\mu^{2(n+1)}}{R^n}.\] Find $w_{eff}$ as a function of $n$ assuming the power law dependence for the scale factor $a(t)=a_0(t/t_0)^\alpha$.

Problem 9

problem id: f_r_9

Show that \[\frac{dq}{d\ln(1+z)}=j-q(2q+1).\]

Problem 13

problem id: f_r_13

Show that characteristic size of the large scale structures is set by actual value of the cosmological constant.


Problem 14

problem id: f_r_14

Inverse problem to the previous one: find upper bound for the cosmological constant $\Lambda9r)$.




Problem 1

problem id: 1301_38

(Inspired by 1. M. Dunajski, G. Gibbons, Cosmic Jerk, Snap and Beyond, arXiv: 0807.0207)

Express the curvature parameter $k$ terms of the cosmographic parameters for the case of Universe filled with non-interacting cosmological constant and non-relativistic matter.


Problem 2

problem id: 1301_39

Do the same as in the previous problem for the case of Universe filled with non-interacting non-relativistic matter $\rho_m=M_m/a^3$ and radiation $\rho_r=M_r/a^4$.


Problem 3

problem id: 1301_40

Check the expressions for the curvature $k$ obtained in the previous problem for two cases: a) a flat Universe solely filled with non-relativistic matter; b) a flat Universe solely filled with radiation.


Problem 4

problem id: 1301_41

Find relation between the cosmographic parameters free of any cosmological parameter for the case of Universe considered in the problem #1301_38.


Problem 5

problem id: 1301_42

Perform the same procedure for the Chaplygin gas with the equation of state $p=-A/\rho$ and for the generalized Chaplygin gas with the equation of state $\rho=-A/\rho^\alpha$.




Problem 1

problem id: new_22

It is of broad interest to understand better the nature of the early Universe especially the Big Bang. The discovery of the CMB in 1965 resolved a dichotomy then existing in theoretical cosmology between steady-state and Big Bang theories. The interpretation of the CMB as a relic of a Big Bang was compelling and the steady-state theory died. Actually at that time it was really a trichotomy being reduced to a dichotomy because a third theory is a cyclic cosmology model. Find the main argument again the latter theory.


Problem 2

problem id: new_26

In 1881, Johnson Stoney proposed a set of fundamental units involving $c$, $G$ and $e$. Build the Stoney's natural units of length, mass and time. \begin{align} \nonumber L_S&=\left(\frac{Ge^2}{c^4}\right)^{1/2};\\ \nonumber M_S&=\left(\frac{e^2}{G}\right)^{1/2};\\ \nonumber T_S&=\left(\frac{Ge^2}{c^6}\right)^{1/2}; \end{align} Show that the fine structure constant $\alpha=e^2/(\hbar c)$ can be used to convert between Stoney and Planck units.


Problem 3

problem id: new_27

Find dimensions of the Newtonian gravitational constant $G$ and charge $e$ in the $N$-dimensional space.


The value $c^4/(4G)$ of the force limit is the energy of a Schwarzschild black hole divided by twice its radius. The maximum power $c^5/(4G)$ is realized when such a black hole is radiated away in the time that light takes to travel along a length corresponding to twice the radius. It will become clear below why a Schwarzschild black hole, as an extremal case of general relativity, is necessary to realize these limit values. (General relativity and cosmology derived from principle of maximum power or force Christoph Schiller (0607090))


Problem

problem id: new_28

Consider n-dimensional homogeneous and isotropic Universe, filled with two non-interacting components: the cosmological constant and a component with the state equation $p_m=w\rho_m$. Express the curvature parameter $k$ through the cosmographic parameters.


Problem

problem id: new_29

Find relation between the cosmographic parameters free of any cosmological parameter for the case of Universe considered in the previous problem.


Problem

problem id: new_30

Find the sound speed for the modified Chaplygin gas with the state equation \[p=B\rho-\frac A{\rho^\alpha}.\]