Difference between revisions of "New oleg"

From Universe in Problems
Jump to: navigation, search
Line 32: Line 32:
 
     H^2=\frac 13\left(\rho_{de0} a^{-3(1+w)}-\frac{a^{-3(1-\delta)}\delta\rho_{dm0}}{w+\delta}+\rho_{dm0}a^{-3(1-\delta)} \right).
 
     H^2=\frac 13\left(\rho_{de0} a^{-3(1+w)}-\frac{a^{-3(1-\delta)}\delta\rho_{dm0}}{w+\delta}+\rho_{dm0}a^{-3(1-\delta)} \right).
 
\end{equation}
 
\end{equation}
Note that here we consider a flat ($k=0$) Universe. Using the method described in the previous section we can write the equivalent Friedmann equation expressed in cosmographic parameters:
+
Note that here we consider a flat ($k=0$) Universe. Using the method described in the problem [[New_problems#1301_38]] we can write the equivalent Friedmann equation expressed in cosmographic parameters:
 
\begin{equation}\label{fridman_Q_rm}
 
\begin{equation}\label{fridman_Q_rm}
 
     (1+3w)(3\delta-1)=2(j-3q(1+w-\delta)).
 
     (1+3w)(3\delta-1)=2(j-3q(1+w-\delta)).

Revision as of 21:50, 9 April 2015


Problem 1

problem id:

Let us consider a very simple model with the following conservation equations: \begin{equation}\label{conserv_Qm} \dot{\rho_{dm}}+3H\rho_{dm}=Q, \end{equation} \begin{equation}\label{conserv_Qe} \dot{\rho_{de}}+3H\rho_{de}(1+w)=-Q, \end{equation} where $Q=3H\delta\rho_{dm}$ is the source of interaction and $w$ is the state equation parameter for dark energy. The positive small coupling constant $\delta$ will eventually characterize how evolution of the matter energy density \begin{equation}\label{rho-m1} \rho_{dm}= \rho_{dm0}a^{-3(1-\delta)}, \end{equation} will deviate from the standard case ($\rho_{m0}$ is the present value of $\rho_m$).

For this model find dependence of the dark energy density on the scale factor and using the method described in the problem New_problems#1301_38 express Friedmann equation in terms of the cosmographic parameters $q, j, l, s$


Problem 2

problem id:


Problem 3

problem id:


Problem 4

problem id:


Problem 5

problem id:


Problem 6

problem id: