Difference between revisions of "New oleg"

From Universe in Problems
Jump to: navigation, search
Line 50: Line 50:
  
  
<div id=""></div>
+
<div id="G-interact-1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 2'''
 
'''Problem 2'''
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: G-interact-1</p>
 
+
Make the same calculations as in the previous problem for model with interaction term $Q=3H\delta\rho_{de}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">For model with interaction term $Q=3H\delta\rho_{de}$ the equivalent Friedmann equation expressed in cosmographic parameters has the form:
 +
\begin{equation}\label{fridman_Q_rde}
 +
    1+3(w+\delta)=-2(j-3q(1+w+\delta)),
 +
\end{equation}
 +
for $\delta=0$ and $w=-1$ this equation also take the form (\ref{8}).
 +
And coupling constant $\delta$
 +
\begin{equation}\label{delta-rde}
 +
  -2q(2+3(w+\delta))+j(2+3(w+\delta))+qj+s=0,
 +
\end{equation}
 +
or
 +
\begin{equation}\label{delta-rde}
 +
    \delta=\frac{2q(2+3w)-j(5+3w)-qj-s}{3(j-2q)}.
 +
\end{equation}
 +
</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Revision as of 21:53, 9 April 2015


Problem 1

problem id: G-interact-1

Let us consider a very simple model with the following conservation equations: \begin{equation}\label{conserv_Qm} \dot{\rho_{dm}}+3H\rho_{dm}=Q, \end{equation} \begin{equation}\label{conserv_Qe} \dot{\rho_{de}}+3H\rho_{de}(1+w)=-Q, \end{equation} where $Q=3H\delta\rho_{dm}$ is the source of interaction and $w$ is the state equation parameter for dark energy. The positive small coupling constant $\delta$ will eventually characterize how evolution of the matter energy density \begin{equation}\label{rho-m1} \rho_{dm}= \rho_{dm0}a^{-3(1-\delta)}, \end{equation} will deviate from the standard case ($\rho_{m0}$ is the present value of $\rho_m$).

For this model find dependence of the dark energy density on the scale factor and using the method described in the problem New_problems#1301_38 express Friedmann equation in terms of the cosmographic parameters $q, j, l, s$


Problem 2

problem id: G-interact-1

Make the same calculations as in the previous problem for model with interaction term $Q=3H\delta\rho_{de}$.


Problem 3

problem id:


Problem 4

problem id:


Problem 5

problem id:


Problem 6

problem id: