Difference between revisions of "New problems"

From Universe in Problems
Jump to: navigation, search
Line 263: Line 263:
 
from which the solutions $H[\varphi]$ can be reconstructed (see figure below).
 
from which the solutions $H[\varphi]$ can be reconstructed (see figure below).
  
[[File:Epsgt0v2.png|center|thumb|400px|Solutions $H[\varphi]$ for quadratic potentials (problem \ref{SSC_6_1}) with $v_0 > 0$ (left), and $v_0 < 0$ (right).]]
+
[[File:Epsgt0v2.png|center|thumb|400px|Solutions $H[\varphi]$ for quadratic potentials (problem [[#SSC_6_1]]) with $v_0 > 0$ (left), and $v_0 < 0$ (right).]]
 
</p>
 
</p>
 
   </div>
 
   </div>
Line 269: Line 269:
  
  
<div id=""></div>
+
<div id="SSC_8"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem  ===
 
=== Problem  ===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: SSC_8</p>
 
+
Estimate main contribution to total expansion factor of the Universe.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Using the results of previous problem, one can define the number of $e$-folds in some interval of time:
 +
\[
 +
N = \int_{t_1}^{t_2} dt H = - \int_{\varphi_1}^{\varphi_2} d\varphi\, \frac{H}{2H'} = - \frac{1}{2}\, \int_{\varphi_1}^{\varphi_2} d\varphi\,
 +
\frac{h_0 + h_1 \varphi + h_2 \varphi^2 + ...}{h_1 + 2 h_2 \varphi + 3 h_3 \varphi^2 + ...}.
 +
\]
 +
This number can get sizeable contributions only in regions where the slow-roll condition is satisfied:
 +
\[
 +
\varepsilon = - \frac{\dot{H}}{H^2} = \frac{2H^{\prime\, 2}}{H^2} < 1 \quad \Rightarrow \quad
 +
3H^2 - V < H^2.
 +
\]
 +
Thus we simultaneously have
 +
\[
 +
V < 3 H^2 \quad \mbox{and} \quad V > 2H^2 \quad \Leftrightarrow \quad
 +
0 \leq \frac{V}{3} < H^2 < \frac{V}{2}.
 +
\]
 +
In most cases this holds only for a relatively narrow range of field values.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
<div id=""></div>
+
<div id="SSC_9_0"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem  ===
 
=== Problem  ===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: SSC_9_0</p>
 
+
Explain difference between end points and turning points of the scalar field evolution.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">In both cases $\dot{\varphi} = 0$, but at end points in addition $\ddot{\varphi} = 0$, which can happen only at extrema of the
 +
potential $V[\varphi]$. However, if the end point occurs at a relative maximum or saddle point of the potential, this end
 +
point will be classically unstable. Indeed, the field can remain there for an indefinite period of time, but any slight
 +
change in the initial conditions will cause it to move on to lower values of the Hubble parameter. Nevertheless, such
 +
a period of temporary slow roll of the field creates the right conditions for a period of inflation.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
<div id=""></div>
+
<div id="SSC_9"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem  ===
 
=== Problem  ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Show that the exponentially decaying scalar field
 +
\[
 +
\varphi(t) = \varphi_0 e^{-\omega t}
 +
\]
 +
can give rise to unstable end points of the evolution.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The Hubble parameter and potential giving rise to this solution can be constructed following the same procedure as for the eternally oscillating field (see problem \ref{SSC_2}), with the result
 +
\[
 +
H = h + \frac{1}{4}\, \omega \varphi^2, \quad V[\varphi] = v_0 - \frac{\mu^2}{2}\, \varphi^2 + \frac{\lambda}{4}\, \varphi^4,
 +
\]
 +
where
 +
\[
 +
v_0 = 3 h^2, \quad
 +
\mu^2 = \omega^2 - 3 \omega h, \quad \lambda = \frac{3 \omega^2}{4}.
 +
\]
 +
Thus we obtain a quartic potential; for $\mu^2 > 0$ it has minima in which reflection symmetry is spontaneously
 +
broken. The exponential solution ends asymptotically at the unstable maximum of the potential where
 +
$\dot{\varphi} = \ddot{\varphi} = 0$. As such it represents an end point of the evolution, but a minimal change in the
 +
initial conditions for the scalar field will turn the end point into a reflection point (if it starts at lower $H$), or
 +
it will overshoot the maximum (if it starts at higher $H$). Thus the end point is unstable, but the exponential
 +
decay will still provide a good approximation to first part of the evolution of the universe for
 +
solutions $H[\varphi]$ coming close to the maximum of the potential (see figure below).
 +
 
 +
[[File:Epsgt0v2.png|center|thumb|400px|Critical curves of stationary points and solutions $H[\varphi]$ for a quartic potential with spontaneous symmetry breaking.]]
 +
</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
<div id=""></div>
+
<div id="SSC_10"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem  ===
 
=== Problem  ===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: SSC_10</p>
 
+
Analyze all possible final states in the model of previous problem.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The exponential scalar field leads to a behavior of the scale factor given by
 +
\[
 +
a(t) = a_0\, e^{ht + \frac{1}{8} \varphi^2_0\, (1 - e^{-2\omega t})}.
 +
\]
 +
Thus for $h > 0$ this epoch in the evolution of the Universe ends in an asymptotic de Sitter state with
 +
Hubble constant $h$. Afterwards, the scalar field will roll further down the potential; provided $3h \leq \omega \leq 6h$
 +
it will oscillate around the minimum until it comes to rest in another de Sitter or a Minkowski state, again depending
 +
on the value of $h$. In particular, for $\omega \geq 3h$ the model has a final de Sitter or Minkowski state in which
 +
$\dot{\varphi} = 0$ and
 +
\[
 +
\langle \varphi^2 \rangle = \frac{\mu^2}{\lambda} = \frac{4}{3} \left(1 - \frac{3h}{\omega} \right).
 +
\]
 +
In this final state the energy density is
 +
\[
 +
\langle V \rangle = v_0 - \frac{\mu^4}{4\lambda} = \frac{\omega}{3} ( 6h - \omega ).
 +
\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
<div id=""></div>
+
<div id="SSC_11"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem  ===
 
=== Problem  ===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: SSC_11</p>
 
+
Express initial energy density of the model of problem \ref{SSC_9} in terms of the $e$-folding number $N$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The energy density for the solution of problem \ref{SSC_9} is
 +
\[
 +
\rho_s(t) = \frac{1}{2}\, \dot{\varphi}^2 + V = 3 H^2 = 3 \left( h + \frac{1}{4}\, \omega\, \varphi_0^2\, e^{-2 \omega t} \right)^2.
 +
\]
 +
Now the solution for the scale factor
 +
\[
 +
a(t) = a_0\, e^{ht + \frac{1}{8} \varphi^2_0\, (1 - e^{-2\omega t})}.
 +
\]
 +
shows, that before reaching the first turning point
 +
at $\varphi = 0$ the scale factor increases by an additional number of $e$-folds given by
 +
\[
 +
N = \frac{1}{8}\, \varphi_0^2.
 +
\]
 +
Therefore the initial energy density at $t = 0$ can be written as
 +
\[
 +
\rho_s(0) = 3 ( h + 2N \omega )^2.
 +
\]
 +
If we take this initial energy density to equal the Planck density: $\rho_s(0) = 1$, this establishes a
 +
simple relation between $h$, $\omega$ and $N$.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
<div id=""></div>
+
<div id="SSC_12"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem  ===
 
=== Problem  ===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: SSC_12</p>
 
+
Estimate mass of the particles corresponding to the exponential scalar field considered in problem [[#SSC_9]].
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Taking the final energy density $\langle V \rangle$ (see problem \ref{SSC_10}) equal to the observed energy density of
 +
the Universe today:
 +
\[
 +
\langle V \rangle = 3 H_0^2 = 1.04 \times 10^{-120}
 +
\]
 +
in Planck units, being so close to zero, one can set to an extremely good approximation $\omega = 6h$,
 +
and
 +
\[
 +
3 h^2 ( 1 + 12 N )^2 = 1, \quad \mu^2 = 18 h^2, \quad \lambda = 27 h^2.
 +
\]
 +
The lower limit on $N$ for inflation as derived from the CMB observations is $N \geq 60$, which requires
 +
\begin{equation}
 +
h \leq 0.8 \times 10^{-3}.\label{h_estimate}
 +
\end{equation}
 +
Now expanding $\varphi$ around its vacuum expectation value
 +
\[
 +
\varphi = \frac{\mu}{\sqrt{\lambda}} + \chi,
 +
\]
 +
the potential becomes
 +
\[
 +
V = \frac{1}{2}\, m_{\chi}^2 \chi^2 + \frac{\alpha}{3}\, m_{\chi} \chi^3 + \frac{\lambda}{4}\, \chi^4,
 +
\]
 +
where
 +
\[
 +
m_{\chi} = 6h, \quad
 +
\alpha = 9h , \quad \lambda = 27 h^2.
 +
\]
 +
According to the estimate (\ref{h_estimate}) the upper limits on these parameters are
 +
\[
 +
m_{\chi} = 0.48 \times 10^{-2}, \quad \alpha = 0.72 \times 10^{-2}\approx1/137, \quad \lambda = 0.17 \times 10^{-4}.
 +
\]
 +
Converting to particle physics units, the upper limit on the mass is $m_{\chi} \leq 1.2 \times 10^{-16}$ GeV.
 +
This suggests that the inflaton could be associated with a GUT scalar of Brout-Englert-Higgs type.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
<div id=""></div>
+
<div id="SSC_13"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem  ===
 
=== Problem  ===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: SSC_13</p>
 
+
{'''(after Tiberiu Harko, arXiv:1310.7167)'''
 +
Calculate the deceleration parameter for flat Universe filled with the scalar field in form of quintessence.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">There are several ways to obtain the result:
 +
\begin{description}
 +
** \[q=-\frac{\ddot a }{aH^2};\quad \frac{\ddot a}{a}=-\frac16(\rho+3p);\quad H^2=\frac13\rho;\]
 +
\[q=\frac{\dot\varphi^2-V}{\frac{\dot\varphi^2}2+V};\]
 +
** \[q=\frac12\Omega_{tot}+\frac32\sum\limits_iw_i\Omega_i.\] For a flat single-component Universe one obtains
 +
\[q=\frac12+\frac32w=\frac12+\frac32\frac{\dot\varphi^2-2V}{\dot\varphi^2+2V}=\frac{\dot\varphi^2-V}{\frac{\dot\varphi^2}2+V};\]
 +
** \[q=\frac{d}{dt}\frac 1 H-1=-\frac{\dot H}{H^2}-1=\frac{3H^2-V}{H^2}-1=\frac{2H^2-V}{H^2}=\frac{\dot\varphi^2-V}{\frac{\dot\varphi^2}2+V}\]
 +
</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Revision as of 04:35, 20 December 2013


NEW Problems in Dark Energy Category

Single Scalar Cosmology

The discovery of the Higgs particle has confirmed that scalar fields play a fundamental role in subatomic physics. Therefore they must also have been present in the early Universe and played a part in its development. About scalar fields on present cosmological scales nothing is known, but in view of the observational evidence for accelerated expansion it is quite well possible that they take part in shaping our Universe now and in the future. In this section we consider the evolution of a flat, isotropic and homogeneous Universe in the presence of a single cosmic scalar field. Neglecting ordinary matter and radiation, the evolution of such a Universe is described by two degrees of freedom, the homogeneous scalar field $\varphi(t)$ and the scale factor of the Universe $a(t)$. The relevant evolution equations are the Friedmann and Klein-Gordon equations, reading (in the units in which $c = \hbar = 8 \pi G = 1$) \[ \frac{1}{2}\, \dot{\varphi}^2 + V = 3 H^2, \quad \ddot{\varphi} + 3 H \dot{\varphi} + V' = 0, \] where $V[\varphi]$ is the potential of the scalar fields, and $H = \dot{a}/a$ is the Hubble parameter. Furthermore, an overdot denotes a derivative w.r.t.\ time, whilst a prime denotes a derivative w.r.t.\ the scalar field $\varphi$.


Problem 1

problem id: SSC_0

Show that the Hubble parameter cannot increase with time in the single scalar cosmology.


Problem 2

problem id: SSC_1

Obtain first-order differential equation for the Hubble parameter $H$ as function of $\varphi$ and find its stationary points.


Problem 3

problem id: SSC_2

Consider eternally oscillating scalar field of the form $\varphi(t) = \varphi_0 \cos \omega t$ and analyze stationary points in such a model.


Problem 4

problem id: SSC_3

Obtain explicit solution for the Hubble parameter in the model considered in the previous problem.


Problem 5

problem id: SSC_4

Obtain explicit time dependence for the scale factor in the model of problem #SSC_2.


Problem 6

problem id: SSC_5

Reconstruct the scalar field potential $V(\varphi)$ needed to generate the model of problem #SSC_2.


Problem 7

problem id: SSC_6_00

Describe possible final states for the Universe governed by a single scalar field at large times.


Problem 8

problem id: SSC_6_0

Formulate conditions for existence of end points of evolution in terms of the potential $V(\varphi)$.


Problem 9

problem id: SSC_6_1

Consider a single scalar cosmology described by the quadratic potential \[ V = v_0 + \frac{m^2}{2}\, \varphi^2. \] Describe all possible stationary points and final states of the Universe in this model.


Problem 10

problem id: SSC_7

Obtain actual solutions for the model of previous problem using the power series expansion \[ H[\varphi] = h_0 + h_1 \varphi + h_2 \varphi^2 + h_3 \varphi^3 + ... \] Consider the cases of $v_0 > 0$ and $v_0 < 0$.


Problem

problem id: SSC_8

Estimate main contribution to total expansion factor of the Universe.


Problem

problem id: SSC_9_0

Explain difference between end points and turning points of the scalar field evolution.


Problem

problem id:

Show that the exponentially decaying scalar field \[ \varphi(t) = \varphi_0 e^{-\omega t} \] can give rise to unstable end points of the evolution.


Problem

problem id: SSC_10

Analyze all possible final states in the model of previous problem.


Problem

problem id: SSC_11

Express initial energy density of the model of problem \ref{SSC_9} in terms of the $e$-folding number $N$.


Problem

problem id: SSC_12

Estimate mass of the particles corresponding to the exponential scalar field considered in problem #SSC_9.


Problem

problem id: SSC_13

{(after Tiberiu Harko, arXiv:1310.7167) Calculate the deceleration parameter for flat Universe filled with the scalar field in form of quintessence.


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id: