Difference between revisions of "New problems"

From Universe in Problems
Jump to: navigation, search
(Hybrid Expansion Law)
(Bianchi I Model)
Line 841: Line 841:
  
  
<div id="bianchi_02"></div>
+
<div id="bi_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 2 ===
 
=== Problem 2 ===
 +
<p style= "color: #999;font-size: 11px">problem id: bi_2</p>
 +
Reformulate the field equations of the BI Universe in terms of the directional Hubble parameters.
 +
\[H_1\equiv\frac{\dot{a_1}}{a_1},\ H_2\equiv\frac{\dot{a_2}}{a_2},\ H_3\equiv\frac{\dot{a_3}}{a_3}.\]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Inserting the directional Hubble parameters and their time derivatives
 +
\[\dot H_1=\frac{\ddot a_1}{a_1}-\left(\frac{\dot a_1}{a_1}\right)^2,\ \dot H_2=\frac{\ddot a_2}{a_2}-\left(\frac{\dot a_2}{a_2}\right)^2,\ \dot H_3=\frac{\ddot a_3}{a_3}-\left(\frac{\dot a_3}{a_3}\right)^2\]
 +
into the modified Friedmann equations we obtain
 +
\begin{align}
 +
\nonumber
 +
H_1H_2+H_1H_3+H_2H_3 & =\rho,\\
 +
\nonumber
 +
\dot H_1+ H_1^2 +\dot H_3+ H_3^2 +H_1H_3& =-p,\\
 +
\nonumber
 +
\dot H_1+ H_1^2 +\dot H_2+ H_2^2 +H_1H_2& =-p,\\
 +
\nonumber
 +
\dot H_2+ H_2^2 +\dot H_3+ H_3^2 +H_2H_3& =-p.
 +
\end{align}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 3 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
The BI Universe has a flat metric, which implies that its total density is equal to the critical density. Find the  critical density.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[\rho_{cr}=H_1H_2+H_1H_3+H_2H_3.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 4 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Obtain an analogue of the conservation equation $\dot\rho+3H(\rho+p)=0$ for the case of the BI Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The energy conservation equation $T^\mu_{\nu;\mu}=0$ yields
 +
\[\dot\rho+3\bar H(\rho+p)=0,\quad \bar H\equiv \frac13(H_1+H_2+H_3)=\frac13\left(\frac{\dot a_1}{a_1} +\frac{\dot a_2}{a_2} +\frac{\dot a_3}{a_3}\right),\]
 +
where $\bar H$ represents the mean of the three directional Hubble parameters in the BI Universe.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Obtain the evolution equation for the mean of the three directional Hubble parameters $\bar H$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Adding the three latter Friedmann equations (see Problem \ref{bi_2}) one obtains
 +
\begin{equation}\label{bi_5_1}
 +
2\frac{d}{dt}\sum\limits_{i=1}^3 H_i+2(H_1^2+H_2^2+H_3^2)+H_1H_2+H_1H_3+H_2H_3=-3p.
 +
\end{equation}
 +
where $\bar H$ represents the mean of the three directional Hubble parameters in the BI Universe.
 +
Substituting
 +
\[\sum\limits_{i=1}^3 H_i^2=\left(\sum\limits_{i=1}^3 H_i\right)^2-2(H_1H_2+H_1H_3+H_2H_3)\]
 +
and
 +
\[H_1H_2+H_1H_3+H_2H_3=\rho\]
 +
into equation (\ref{bi_5_1}), we then obtain
 +
\[\frac{d}{dt}\sum\limits_{i=1}^3 H_i+\left(\sum\limits_{i=1}^3 H_i\right)^2=\frac32(\rho-p).\]
 +
Using the mean of the three directional Hubble parameters $\bar H$ we obtain a nonlinear first order differential equation
 +
\[\dot{\bar H}+3\bar H^2=\frac12(\rho-p).\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 6 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Show that the system of equations for the BI Universe
 +
\begin{align}
 +
\nonumber
 +
H_1H_2+H_1H_3+H_2H_3 & =\rho,\\
 +
\nonumber
 +
\dot H_1+ H_1^2 +\dot H_3+ H_3^2 +H_1H_3& =-p,\\
 +
\nonumber
 +
\dot H_1+ H_1^2 +\dot H_2+ H_2^2 +H_1H_2& =-p,\\
 +
\nonumber
 +
\dot H_2+ H_2^2 +\dot H_3+ H_3^2 +H_2H_3& =-p,
 +
\end{align}
 +
can be transformed to the following
 +
\begin{align}
 +
\nonumber
 +
H_1H_2+H_1H_3+H_2H_3 & =\rho,\\
 +
\nonumber
 +
\dot H_1+ 3H_1\bar H & =\frac12(\rho-p),\\
 +
\nonumber
 +
\dot H_2+ 3H_2\bar H & =\frac12(\rho-p),\\
 +
\nonumber
 +
\dot H_3+ 3H_3\bar H & =\frac12(\rho-p).
 +
\end{align}
 +
<!--<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div>--></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Show that the mean of the three directional Hubble parameters $\bar H$ is related to the elementary volume of the BI Universe $V\equiv a_1a_2a_3$ as \[\bar H=\frac13\frac{\dot V}{V}.\]
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\[\bar H=\frac13\frac{d}{dt}\ln(a_1a_2a_3)=\frac13\frac{d}{dt}\ln V=\frac13\frac{\dot V}{V}.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 8 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Obtain the volume evolution equation of the BI model.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Using the relation between volume $V$ and the mean Hubble parameter $\bar H$, obtained in the previous problem, one finds
 +
\[\dot{\bar H}=\frac13\frac{\ddot V}{V}-3\bar H^2.\]
 +
As
 +
\[\dot{\bar H}+3\bar H^2=\frac12(\rho-p),\]
 +
we obtain
 +
\[\ddot V-\frac32(\rho-p)V=0.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 9 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Find the generic solution of the directional Hubble parameters.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The equations
 +
\begin{align}
 +
\nonumber
 +
\dot H_1+ 3H_1\bar H & =\frac12(\rho-p),\\
 +
\nonumber
 +
\dot H_2+ 3H_2\bar H & =\frac12(\rho-p),\\
 +
\nonumber
 +
\dot H_3+ 3H_3\bar H & =\frac12(\rho-p),
 +
\end{align}
 +
allow us to write the generic solution of the directional Hubble parameters,
 +
\[H_i(t)=\frac1{\mu(t)}\left[K_i+\frac12\int\mu(t)(\rho(t)-p(t))dt\right],\quad i=1,2,3,\]
 +
where $K_i$s are the integration constants. The integration factor $\mu$ is defined as,
 +
\[\mu(t)=\exp\left(3\int\bar H(t)dt\right).\]
 +
As can be seen, the initial values (integration constants) determine the solution of each directional Hubble parameter. These values are the origin of the anisotropy. Note that the generic solution of the directional Hubble parameters is incomplete. To obtain exact solutions of the Hubble parameters and therefore the Einstein equations, one has to know the state equation for the component which fills the Universe.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
==Radiation dominated BI model ==
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 10 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Find the energy density of the radiation dominated BI Universe in terms of volume element $V_r$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">By using the energy conservation equation
 +
\[\dot\rho+3\bar H(\rho+p)=0\to\dot\rho+4\bar H\rho=0,\]
 +
and the volume representation of the mean Hubble parameter
 +
\[\bar H=\frac13\frac{d}{dt}\ln(a_1a_2a_3)=\frac13\frac{d}{dt}\ln V=\frac13\frac{\dot V}{V}.\]
 +
we obtain (with $\rho\to\rho_r$, $V\to V_r$):
 +
\[\rho_r=\rho_{r0}\left(\frac{V_{r0}}{V_r}\right)^{4/3}.\]
 +
Here the density and the volume element is normalized to the present time $t_0$. The parameters $\rho_{r0}$ and $V_{r0}$ are the normalized density and normalized volume elements.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 11 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Find the mean Hubble parameter of the radiation dominated case.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">For the radiation dominated case
 +
\[\ddot V_r-\frac32(\rho-p)V_r=0\to\ddot V_r-V_r\rho_r=0.\]
 +
(see problem 8). Using \[\rho_r=\rho_{r0}\left(\frac{V_{r0}}{V_r}\right)^{4/3}\] we obtain (for $V_{r0}=1$)
 +
\[\ddot V_r-\rho_{r0}V_r^{-1/3}=0.\]
 +
Multiplying this equation  with the $\dot V_r$ and integrating it, yields,
 +
\[\dot V_r^2-3\rho_{r0}V_r^{2/3}=0.\]
 +
Hence, the exact solution of the volume evolution equation is
 +
\[V_r=(2H_0t)^{3/2}.\]
 +
The mean Hubble parameter of the radiation dominated case is
 +
\[\bar H=\frac13\frac{\dot V_r}{V}=\frac1{2t}.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 12 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Find the directional expansion rates of the radiation dominated model.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The generic solution of the directional Hubble parameters (see problem 9) is
 +
\[H_i(t)=\frac1{\mu(t)}\left[K_i+\frac12\int\mu(t)(\rho(t)-p(t))dt\right],\quad i=1,2,3,\]
 +
Using the expression for the mean Hubble parameter obtained in the previous problem, one finds
 +
\[\mu_r(t)=\exp(3\int\bar H(t)dt)\]
 +
By direct substitution of the integration factor $\mu_r$ and the equation of state $p_r=\rho_r/3$ of the radiation dominated case we obtain for the directional Hubble parameters that are normalized to the present-day time $t_0$ the following results
 +
\[H_{r,i}t_0=\alpha_{r,i}\left(\frac{t_0}{t}\right)^{3/2}+\frac12\frac{t_0}{t};\quad \alpha_{r,i}\equiv\frac{K_{r,i}}{t_0}.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 13 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Find time dependence for the scale factors $a_i$ in the radiation dominated BI Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The normalized scale factors $a_i$ can be obtained from the directional Hubble parameters
 +
\[H_{r,i}=\alpha_{r,i}\frac1{t_0}\left(\frac{t_0}{t}\right)^{3/2}+\frac12\frac{1}{t},\]
 +
with a direct integration in terms of cosmic time,
 +
\[a_{r,i}=\exp\left[-2\alpha_{r,i}\left(\sqrt{\frac{t_0}{t}}-1\right)\right]\left(\frac{t_0}{t}\right)^{1/2}.\]
 +
The scale factors of the BI radiation dominated model has the contribution from anisotropic expansion/contraction \[\exp\left[-2\alpha_{r,i}\left(\sqrt{\frac{t_0}{t}}-1\right)\right]\] as well as the standard matter dominated FLRW contribution $(t/t_0)^{1/2}$. These two different dynamical behaviors in three directional scale factors of the BI universe indicate that the FLRW part of the scale factor becomes dominant when time starts reaching the present-day. On the other hand, in the early times of the BI model, the expansion is completely dominated by the anisotropic part.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="bianchi_02"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 14 ===
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_02</p>
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_02</p>
 
Find the partial energy densities for the two components of the BI Universe dominated by radiation and matter in terms of volume element $V_{rm}$.
 
Find the partial energy densities for the two components of the BI Universe dominated by radiation and matter in terms of volume element $V_{rm}$.
Line 873: Line 1,122:
 
<div id="bianchi_03"></div>
 
<div id="bianchi_03"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 3 ===
+
=== Problem 15 ===
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_03</p>
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_03</p>
 
Obtain time evolution equation for the total volume $V_{rm}$ in the BI Universe dominated by radiation and matter.
 
Obtain time evolution equation for the total volume $V_{rm}$ in the BI Universe dominated by radiation and matter.
Line 895: Line 1,144:
 
<div id="bianchi_04"></div>
 
<div id="bianchi_04"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 4 ===
+
=== Problem 16 ===
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_04</p>
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_04</p>
 
Using result of the previous problem, obtain a relation between the mean Hubble parameter and the volume element.
 
Using result of the previous problem, obtain a relation between the mean Hubble parameter and the volume element.
Line 907: Line 1,156:
  
 
----
 
----
 +
 
= NEW problems in Dark Matter Category =
 
= NEW problems in Dark Matter Category =
  

Revision as of 01:11, 18 March 2014


NEW Problems in Cosmo warm-up Category

Play with Numbers after Sivaram

Problem 1

problem id: Siv_1

(after C.Sivaram, Dark Energy may link the numbers of Rees, arXiv: 0710.4993) Given $\Lambda$-dominated Universe, the requirement that for various large scale structures (held together by self gravity) to form a variety of length scales, their gravitational self energy density should at least match the ambient vacuum energy repulsion, as was shown to imply [16. C Sivaram, Astr. Spc. Sci, 219, 135; IJTP, 33, 2407, 1994, 17. C Sivaram, Mod. Phys. Lett., 34, 2463, 1999] a scale invariant mass-radius relationship to the form (for the various structures): \[\frac M{R^2}\approx\sqrt\Lambda\frac{c^2} G.\] This equation predicts a universality of $M/R^2$ for a large variety of structures. Check this statement for such structures as a galaxy, a globular cluster, a galaxy cluster.


Problem 2

problem id: Siv_2

(after C.Sivaram, Scaling Relations for self-Similar Structures and the Cosmological Constant, arXiv: 0801.1218) In recent papers [13. Sivaram, C.: 1993a, Mod. Phys. Lett. 8,321.; 14. Sivaram, C.: 1993b, Astrophys. Spc. Sci. 207, 317.; 15. Sivaram, C.: 1993c, Astron. Astrophys. 275, 37.; 16. Sivaram, C.: 1994a, Astrophysics. Spc. Sci., 215, 185.; 17. Sivaram, C.: 1994b. Astrphysics .Spc .Sci., 215,191.; 18. Sivaram, C.: 1994c. Int. J. Theor. Phys. 33, 2407.], it was pointed out that the surface gravities of a whole hierarchy of astronomical objects (i.e. globular clusters, galaxies, clusters, super clusters, GMC's etc.) are more or less given by a universal value $a_0\approx cH_0\approx 10^{-8} cm\ s^{-2}$ a o ƒ° cHo ƒ° 10-8 cms-2. Thus \[a=\frac{GM}{R^2}\approx a_0\] for all these objects, $M$ being their typical mass and $R$ their typical radius. Also interestingly enough it was also pointed out [4. Sivaram, C.: 1982, Astrophysics. Spc. Sci. 88,507.; 5. Sivaram, C.: 1982, Amer. J. Phy. 50, 279.; 6. Sivaram, C.: 1983, Amer. J. Phys. 51, 277.; 7. Sivaram, C.: 1983, Phys. Lett. 60B, 181.] that the gravitational self energy of a typical elementary particle (hadron) was shown to be \[E_G\approx\frac{Gm^3 c}{\hbar}\approx\hbar H_0\] implying the same surface gravity value for the particle \[a_h=\frac{GM}{r^2}\approx \frac{Gm^3 c}{\hbar}\times\frac c\hbar\approx cH_0\approx a_0.\] Calculate actual value of the ratio \[\frac M{R^2}\approx\sqrt\Lambda\frac{c^2} G\sim1\] for such examples as a galaxy, whole Universe, globular cluster, a GMC, a supercluster, nuclei, an electron, Solar system, planetary nebula.



NEW Problems in Dark Energy Category

Single Scalar Cosmology

Single Scalar Cosmology

The discovery of the Higgs particle has confirmed that scalar fields play a fundamental role in subatomic physics. Therefore they must also have been present in the early Universe and played a part in its development. About scalar fields on present cosmological scales nothing is known, but in view of the observational evidence for accelerated expansion it is quite well possible that they take part in shaping our Universe now and in the future. In this section we consider the evolution of a flat, isotropic and homogeneous Universe in the presence of a single cosmic scalar field. Neglecting ordinary matter and radiation, the evolution of such a Universe is described by two degrees of freedom, the homogeneous scalar field $\varphi(t)$ and the scale factor of the Universe $a(t)$. The relevant evolution equations are the Friedmann and Klein-Gordon equations, reading (in the units in which $c = \hbar = 8 \pi G = 1$) \[ \frac{1}{2}\, \dot{\varphi}^2 + V = 3 H^2, \quad \ddot{\varphi} + 3 H \dot{\varphi} + V' = 0, \] where $V[\varphi]$ is the potential of the scalar fields, and $H = \dot{a}/a$ is the Hubble parameter. Furthermore, an overdot denotes a derivative w.r.t.\ time, whilst a prime denotes a derivative w.r.t.\ the scalar field $\varphi$.


Problem 1

problem id: SSC_0

Show that the Hubble parameter cannot increase with time in the single scalar cosmology.


Problem 2

problem id: SSC_00

Show that if the Universe is filled by a substance which satisfies the null energy condition then the Hubble parameter is a semi-monotonically decreasing function of time.


Problem 3

problem id: SSC_0_1

For single-field scalar models express the scalar field potential in terms of the Hubble parameter and its derivative with respect to the scalar field.


Problem 4

problem id: SSC_1

Obtain first-order differential equation for the Hubble parameter $H$ as function of $\varphi$ and find its stationary points.


Problem 5

problem id: SSC_2

Consider eternally oscillating scalar field of the form $\varphi(t) = \varphi_0 \cos \omega t$ and analyze stationary points in such a model.


Problem 6

problem id: SSC_3

Obtain explicit solution for the Hubble parameter in the model considered in the previous problem.


Problem 7

problem id: SSC_4

Obtain explicit time dependence for the scale factor in the model of problem #SSC_2.


Problem 8

problem id: SSC_5

Reconstruct the scalar field potential $V(\varphi)$ needed to generate the model of problem #SSC_2.


Problem 9

problem id: SSC_6_00

Describe possible final states for the Universe governed by a single scalar field at large times.


Problem 10

problem id: SSC_6_0

Formulate conditions for existence of end points of evolution in terms of the potential $V(\varphi)$.


Problem 11

problem id: SSC_6_1

Consider a single scalar cosmology described by the quadratic potential \[ V = v_0 + \frac{m^2}{2}\, \varphi^2. \] Describe all possible stationary points and final states of the Universe in this model.


Problem 12

problem id: SSC_7

Obtain actual solutions for the model of previous problem using the power series expansion \[ H[\varphi] = h_0 + h_1 \varphi + h_2 \varphi^2 + h_3 \varphi^3 + ... \] Consider the cases of $v_0 > 0$ and $v_0 < 0$.


Problem 13

problem id: SSC_8

Estimate main contribution to total expansion factor of the Universe.


Problem 14

problem id: SSC_9_0

Explain difference between end points and turning points of the scalar field evolution.


Problem 15

problem id: SSC_9

Show that the exponentially decaying scalar field \[ \varphi(t) = \varphi_0 e^{-\omega t} \] can give rise to unstable end points of the evolution.


Problem 16

problem id: SSC_10

Analyze all possible final states in the model of previous problem.


Problem 17

problem id: SSC_11

Express initial energy density of the model of problem #SSC_9 in terms of the $e$-folding number $N$.


Problem 18

problem id: SSC_12

Estimate mass of the particles corresponding to the exponential scalar field considered in problem #SSC_9.


Problem 19

problem id: SSC_13

Calculate the deceleration parameter for flat Universe filled with the scalar field in form of quintessence.


Problem 20

problem id: SSC_14_

When considering dynamics of scalar field $\varphi$ in flat Universe, let us define a function $f(\varphi)$ so that $\dot\varphi=\sqrt{f(\varphi)}$. Obtain the equation describing evolution of the function $f(\varphi)$. (T. Harko, F. Lobo and M. K. Mak, Arbitrary scalar field and quintessence cosmological models, arXiv: 1310.7167)



The Power-Law Cosmology

The Power-Law Cosmology

Problem 1

problem id: PWL_1

Show that for power law $a(t)\propto t^n$ expansion slow-roll inflation occurs when $n\gg1$.


Problem 2

problem id: PWL_2

Show that in the power-law cosmology the scale factor evolution $a\propto\eta^q$ in conformal time transforms into $a\propto t^p$ in physical (cosmic) time with \[p=\frac{q}{1+q}.\]


Problem 3

problem id: PWL_3

Show that if $a\propto\eta^q$ then the state parameter $w$ is related to the index $q$ by the following \[w=\frac{2-q}{3q}=const.\]



Hybrid Expansion Law

Hybrid Expansion Law

In problems #SSC_18 - #SSC_19_0 we follow the paper of Ozgur Akarsu, Suresh Kumar, R. Myrzakulov, M. Sami, and Lixin Xu4, Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints (arXiv:1307.4911) to study expansion history of Universe, using the hybrid expansion law---a product of power-law and exponential type of functions \[a(t)=a_0\left(\frac{t}{t_0}\right)^\alpha\exp\left[\beta\left(\frac{t}{t_0}-1\right)\right],\] where $\alpha$ and $\beta$ are non-negative constants. Further $a_0$ and $t_0$ respectively denote the scale factor and age of the Universe today.

Problem 1

problem id: SSC_18

Calculate Hubble parameter, deceleration parameter and jerk parameter for hybrid expansion law.


Problem 2

problem id: SSC_18_2

For hybrid expansion law find $a, H, q$ and $j$ in the cases of very early Universe $(t\to0)$ and for the late times $(t\to\infty)$.


Problem 3

problem id: SSC_18_3

In general relativity, one can always introduce an effective source that gives rise to a given expansion law. Using the ansatz of hybrid expansion law obtain the EoS parameter of the effective fluid.


Problem 4

problem id: SSC_19

We can always construct a scalar field Lagrangian which can mimic a given cosmic history. Consequently, we can consider the quintessence realization of the hybrid expansion law. Find time dependence for the the quintessence field $\varphi(t)$ and potential $V(t)$, realizing the hybrid expansion law. Obtain the dependence $V(\varphi)$.


Problem 5

problem id: SSC_19_1

Quintessence paradigm relies on the potential energy of scalar fields to drive the late time acceleration of the Universe. On the other hand, it is also possible to relate the late time acceleration of the Universe with the kinetic term of the scalar field by relaxing its canonical kinetic term. In particular this idea can be realized with the help of so-called tachyon fields, for which \[\rho=\frac{V(\varphi)}{\sqrt{1-\dot\varphi^2}},\quad p=-V(\varphi)\sqrt{1-\dot\varphi^2}.\] Find time dependence of the tachyon field $\varphi(t)$ and potential $V(t)$, realizing the hybrid expansion law. Construct the potential $V(\varphi)$.


Problem 6

problem id: SSC_19_2

Calculate Hubble parameter and deceleration parameter for the case of phantom field in which the energy density and pressure are respectively given by \[\rho =-\frac{1}{2}\dot{\varphi}^2+V(\varphi),\quad p =-\frac{1}{2}\dot{\varphi}^2-V(\varphi).\]


Problem 7

problem id: SSC_19_0

Solve the problem #SSC_19 for the case of phantom field.


Problem 8

problem id: SSC_19_12

Find EoS parameter for the case of phantom field.



Bianchi I Model

Bianchi I Model

(after Esra Russell, Can Battal Kılınç, Oktay K. Pashaev, Bianchi I Models: An Alternative Way To Model The Present-day Universe, arXiv:1312.3502)


Theoretical arguments and indications from recent observational data support the existence of an anisotropic phase that approaches an isotropic one. Therefore, it makes sense to consider models of a Universe with an initially anisotropic background. The anisotropic and homogeneous Bianchi models may provide adequate description of anisotropic phase in history of Universe. One particular type of such models is Bianchi type I (BI) homogeneous models whose spatial sections are flat, but the expansion rates are direction dependent, \[ds^2={c^2}dt^2-a^{2}_{1}(t)dx^2-a^{2}_{2}(t)dy^2-a^{2}_{3}(t)dz^2\] where $a_{1}$, $a_{2}$ and $a_{3}$ represent three different scale factors which are a function of time $t$.

Problem 1

problem id: bianchi_01

Find the field equations of the BI Universe.


Problem 2

problem id: bi_2

Reformulate the field equations of the BI Universe in terms of the directional Hubble parameters. \[H_1\equiv\frac{\dot{a_1}}{a_1},\ H_2\equiv\frac{\dot{a_2}}{a_2},\ H_3\equiv\frac{\dot{a_3}}{a_3}.\]


Problem 3

problem id:

The BI Universe has a flat metric, which implies that its total density is equal to the critical density. Find the critical density.


Problem 4

problem id:

Obtain an analogue of the conservation equation $\dot\rho+3H(\rho+p)=0$ for the case of the BI Universe.


Problem 5

problem id:

Obtain the evolution equation for the mean of the three directional Hubble parameters $\bar H$.


Problem 6

problem id:

Show that the system of equations for the BI Universe \begin{align} \nonumber H_1H_2+H_1H_3+H_2H_3 & =\rho,\\ \nonumber \dot H_1+ H_1^2 +\dot H_3+ H_3^2 +H_1H_3& =-p,\\ \nonumber \dot H_1+ H_1^2 +\dot H_2+ H_2^2 +H_1H_2& =-p,\\ \nonumber \dot H_2+ H_2^2 +\dot H_3+ H_3^2 +H_2H_3& =-p, \end{align} can be transformed to the following \begin{align} \nonumber H_1H_2+H_1H_3+H_2H_3 & =\rho,\\ \nonumber \dot H_1+ 3H_1\bar H & =\frac12(\rho-p),\\ \nonumber \dot H_2+ 3H_2\bar H & =\frac12(\rho-p),\\ \nonumber \dot H_3+ 3H_3\bar H & =\frac12(\rho-p). \end{align}


Problem 7

problem id:

Show that the mean of the three directional Hubble parameters $\bar H$ is related to the elementary volume of the BI Universe $V\equiv a_1a_2a_3$ as \[\bar H=\frac13\frac{\dot V}{V}.\]


Problem 8

problem id:

Obtain the volume evolution equation of the BI model.


Problem 9

problem id:

Find the generic solution of the directional Hubble parameters.


Radiation dominated BI model

Problem 10

problem id:

Find the energy density of the radiation dominated BI Universe in terms of volume element $V_r$.


Problem 11

problem id:

Find the mean Hubble parameter of the radiation dominated case.


Problem 12

problem id:

Find the directional expansion rates of the radiation dominated model.


Problem 13

problem id:

Find time dependence for the scale factors $a_i$ in the radiation dominated BI Universe.


Problem 14

problem id: bianchi_02

Find the partial energy densities for the two components of the BI Universe dominated by radiation and matter in terms of volume element $V_{rm}$.


Problem 15

problem id: bianchi_03

Obtain time evolution equation for the total volume $V_{rm}$ in the BI Universe dominated by radiation and matter.


Problem 16

problem id: bianchi_04

Using result of the previous problem, obtain a relation between the mean Hubble parameter and the volume element.



NEW problems in Dark Matter Category

Generalized models of unification of dark matter and dark energy

Generalized models of unification of dark matter and dark energy

(see N. Caplar, H. Stefancic, Generalized models of unification of dark matter and dark energy (arXiv: 1208.0449))

Problem 1

problem id: gmudedm_1

The equation of state of a barotropic cosmic fluid can in general be written as an implicitly defined relation between the fluid pressure $p$ and its energy density $\rho$, \[F(\rho,p)=0.\] Find the speed of sound in such fluid.


Problem 2

problem id: gmudedm_2

For the barotropic fluid with a constant speed of sound $c_s^2=const$ find evolution of the parameter of EOS, density and pressure with the redshift.



Tutti Frutti

New problem in Cosmo warm-up Category:

Problem 1

problem id: TF_1

Construct planck units in a space of arbitrary dimension.


New problem in Inflation Category:

Problem 2

problem id: TF_2

Show that for power law $a(t)\propto t^n$ expansion slow roll inflation occurs when $n\gg1$.


Problem 3

problem id: TF_3

Find the general condition to have accelerated expansion in terms of the energy densities of the darks components and their EoS parameters