Difference between revisions of "New problems"

From Universe in Problems
Jump to: navigation, search
Line 1,436: Line 1,436:
  
  
---
+
----
 +
 
 
= NEW Problems in Dynamics of the Expanding Universe Category =
 
= NEW Problems in Dynamics of the Expanding Universe Category =
  
Line 1,443: Line 1,444:
  
  
<!--
+
 
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 1 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Using $d_l (z)=a_0 (1+z)f(\chi)$, where
 +
\[\chi=\frac1{a_0}\int\limits_0^z\frac{du}{H(u)},\quad f(\chi)=\left\{\begin{array}{rcl}
 +
    \chi & - & flat\ case\\
 +
    \sinh(\chi) & - & open\ case\\
 +
    \sin(\chi) & - & closed\ case.
 +
    \end{array}\right.\]
 +
    find the standard luminosity distance-versus-redshift relation up to the second order in $z$:
 +
    \[d_L=\frac z{H_0}\left[1+\left(\frac{1-q_0}2\right)z+O(z^2)\right].\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Simply break up the Hubble parameter under the integral into a series, integrate, and use the numerous formulas already in the Cosmography section. (see Expanding Universe: slowdown or speedup?, or the Visser convergence article.)</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,459: Line 1,467:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 2 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Many supernovae give data in the $z>1$ redshift range. Why is this a problem for the above formula for the $z$-redshift? (Problems 2) - 10) are all from the Visser convergence article)
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\[\frac1{1+z}=\frac{a(t)}{a_0}=1+H_0(t-t_0)-\frac{q_0 H_0^2}{2!}(t-t_0)^2+\frac{j_0 H_0^3}{3!}(t-t_0)^3+O(|t-t_0|^4).\]
 +
 
 +
This is the power series for $a(t)$, and it serves as the basis of all of our power series. However, it has a pole at $z=-1$. By complex variable theory, this means that the radius of convergence is at most $1$, so data with $z>1$ is outside of the convergence radius. (NOTE: I'm a bit confused about the fine points of this - I don't fully understand why we look at the convergence radius of this particular relation, to be honest. This is something you should discuss)</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,472: Line 1,482:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 3 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Give physical reasons for the above divergence at $z=-1$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">$z=-1$ corresponds to $a=\infty$ - we can't "look past" infinity.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,485: Line 1,495:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 4 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Sometimes a "pivot" is used:
 +
\[z=z_{pivot}+\Delta z,\]
 +
\[\frac1{1+z_{pivot}+\Delta z}=\frac{a(t)}{a_0}=1+H_0(t-t_0)-\frac1{2!}{q_0 H_0^2}(t-t_0)^2+\frac1{3!}{j_0 H_0^3}(t-t_0)^3+O(|t-t_0|^4).\]
 +
What is the convergence radius now?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The pole is now located at
 +
\[\Delta z=-(1+z_{pivot}),\]
 +
which again physically corresponds to a Universe that had undergone infinite expansion, $a=\infty$. The radius of convergence is now
 +
\[|\Delta z|\le(1+z_{pivot}),\]
 +
and we expect the pivoted version of the Hubble law to fail for
 +
\[z>1+2z_{pivot}.\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,498: Line 1,516:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 5 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
The most commonly used definition of redshift is
 +
\[z=\frac{\lambda_0-\lambda_e}\lambda_e=\frac{\Delta\lambda}\lambda_e.\]
 +
Let's introduce a new redshift:
 +
\[z=\frac{\lambda_0-\lambda_e}\lambda_0=\frac{\Delta\lambda}\lambda_0.\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">a) What is the "new $y$-redshift" in terms of the old $z$?
 +
  \[y=\frac z{1+z},\quad z=\frac y{1-y}.\]
 +
b) The past and the future correspond, in terms of $z$-redshift to $z\in(0,\infty)$ and $z\in(-1,0)$ respectively. What are these intervals in terms of $y$-redshift?
 +
 
 +
Past: $y\in(0,1)$, future: $y\in(-\infty,0)$.
 +
<br/>
 +
c) get the correlation between luminosity distance and $y$-redshift up to the second power:
 +
\[d_L(y)=d_H y\left\{1-\frac12(-3+q_0)y+O(y^2)\right\}.\]
 +
</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,511: Line 1,540:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 6 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Argue why, on physical grounds, we can't extrapolate beyond $y=1$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">We can't extrapolate through the big bang. Thus, we assume that the convergence radius of $y$-redshift-based formulas should be $1$ (see the picture)</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
<div id=""></div>
+
<div id="cg_7"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 7 ===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: cg_7</p>
 +
The most commonly used distance is the luminosity distance, and it is related to the distance modulus in the following way:
 +
\[\mu_D=5\log_10[d_L/(10\ pc)]=5\log_10[d_L/(1\ Mpc)]+25.\]
 +
    However, alternative distances are also used (for a variety of mathematical purposes):
 +
<br/>1) The "photon flux distance": \[d_F=\frac{d_L}{(1+z)^{1/2}}.\]
 +
<br/>2) The "photon count distance": \[d_P=\frac{d_L}{(1+z)}.\]
 +
<br/>3) The "deceleration distance": \[d_Q=\frac{d_L}{(1+z)^{3/2}}.\]
 +
<br/>4) The "angular diameter distance": \[d_A=\frac{d_L}{(1+z)^{2}}.\]
  
<div class="NavFrame collapsed">
+
Obtain the Hubble law for these distances (in terms of $z$-redshift, up to the second power by z):
 +
\begin{align}
 +
\nonumber d_F(z) & =d_H z\left\{1-\frac12q_0z+O(z^2)\right\}.\\
 +
\nonumber d_P(z) & =d_H z\left\{1-\frac12(1+q_0)z+O(z^2)\right\}.\\
 +
\nonumber d_Q(z) & =d_H z\left\{1-\frac12(2+q_0)z+O(z^2)\right\}.\\
 +
\nonumber d_A(z) & =d_H z\left\{1-\frac12(3+q_0)z+O(z^2)\right\}.
 +
\end{align}
 +
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 8 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Do the same for the distance modulus directly.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\[\mu_D(z)=25+\frac5{\ln(10)}\left\{\ln(d_H/Mpc)+\ln z+\frac12(1-q_0)z+O(z^2)\right\}.\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,550: Line 1,593:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 9 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Do problem [[#cg_7]] but for $y$-redshift.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\begin{align}
 +
\nonumber d_F(y) & =d_H y\left\{1-\frac12(-2+q_0)y+O(y^2)\right\}.\\
 +
\nonumber d_P(y) & =d_H y\left\{1-\frac12(-1+q_0)y+O(y^2)\right\}.\\
 +
\nonumber d_Q(y) & =d_H y\left\{1-\frac{q_0}2y+O(y^2)\right\}.\\
 +
\nonumber d_A(y) & =d_H y\left\{1-\frac12(1+q_0)y+O(y^2)\right\}.
 +
\end{align}</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
<div id=""></div>
+
<div id="cg_10"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 10 ===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: cg_10</p>
 
+
Obtain the THIRD-order luminosity distance expansion in terms of $z$-redshift
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\[d_L(z) =d_H z\left\{1-\frac12(-1+q_0)z +\frac16[q_0+3q_0^2-(j_0+\Omega_0)]z^2+O(z^3)\right\},\]
 +
\[\Omega_0=1+\frac{kc^2}{H_0^2a_0^2}=1+\frac{kd_H^2}{a_0^2}.\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,576: Line 1,625:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 11 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Alternative (if less physically evident) redshifts are also viable. One promising redshift is the $y_4$ redshift: $y_4 = \arctan(y)$. Obtain the second order redshift formula for $d_L$ in terms of $y_4$. <!--(from Aviles article - YredshiftBolotinRecommended)-->
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;"> \[d_L=\frac1{H_0}\cdot\left[y_4+y_4^2\cdot\left(\frac12-\frac{q_0}2\right)\right].\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,589: Line 1,638:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 12 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
$H_0a_0/c\gg1$ is a generic prediction of inflationary cosmology. Why is this an obstacle in proving/measuring the curvature of pace based on cosmographic methods?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Recalling problem \ref{cg_10}, we see that the term that includes $K$ is proportional to $(H_0a_0/c\gg1)^{-2}$, so for all practical (cosmographic) purposes, our Universe is indistinguishable from a flat Universe. If the Universe is really flat, then we will never be able to strictly prove its flatness from cosmographic methods - we will only be able to put ever-stricter bounds on $H_0a_0/c\gg1$. If the Universe is not flat, then with good enough data, we will be able to determine the non-flatness <!-(see Visser3(Simple good))-->.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,602: Line 1,651:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 13 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
When looking  at the various series formulas, you might be tempted to just take the highest-power formulas you can get and work with them.  Why is this not a good idea?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The more parameters you have, the larger the region in parameter space, the less strict the limitations on the parameters and the higher the possibility of degeneracies. So the complexity of the formula should be in correspondence with the amount and accuracy of available experimental data!</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,615: Line 1,664:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 14 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Using the definition of the redshift, find the ratio \[\frac{\Delta z}{\Delta t_{obs}},\] called "redshift drift" through the Hubble Parameter for a fixed/commoving observer and emitter:
 +
\[\int\limits_{t_s}^{t_o}\frac{dt}{a(t)}=\int\limits_{t_s+\Delta t_s}^{t_o+\Delta t_o}\frac{dt}{a(t)}.\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">From the formula in the formulation of the problem, take $\Delta t/t\ll1$. This gives $\Delta t_s=[a(t_s)/a(t_o)]\Delta t_o$. Then, \[\Delta z\equiv\frac{a(t_o+\Delta t_o)}{a(t_s+\Delta t_s)}-\frac{a(t_o)}{a(t_s)}\approx\left[\frac{\dot a(t_o)-\dot a(t_s)}{a(t_s)}\right]\Delta t_o,\] which automatically gives \[\frac{\Delta z}{\Delta t_{obs}}=(1+z)H_{obs}-H(z).\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,628: Line 1,678:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 15 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
A photon's physical distance traveled is \[D=c\int dt=c(t_0-t_s).\] Using the definition of the redshift, construct a power series for $z$-redshift based on this physical distance.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\[z(D)=\frac{H_0D}c+\frac{1+q_0}2\frac{H_0^2D^2}{c^2}+\frac{6(1+q_0)+j_0}6\frac{H_0^3D^3}{c^3} +O\left(\left[\frac{H_0^4D^4}{c^4}\right]\right).\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,641: Line 1,691:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 16 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Invert result of the previous problem (up to $z^3$).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\[D(z)=\frac{cz}{H_0}\left[1-\left(1+\frac{q_0}2\right)z +\left(1+q_0+\frac{q_0^2}2-\frac{q_0}6\right)z^2 O(z^3)\right].\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,654: Line 1,704:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 17 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Obtain a power series (in $z$) breakdown of redshift drift up to $z^3$ (hint: use $(dH)/(dz)$ formulas)
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\[\frac{\Delta z}{\Delta t_0} = -H_0q_0z+\frac12H_0(q_0^2-j_0)z^2+ \frac12H_0\left[\frac13(s_0+4q_0j_0)+j_0-q_0^2-q_0^3\right]z^3 +O(z^4).\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,667: Line 1,717:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 18 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Using the Friedmann equations, continuity equations, and the standard definitions for heat capacity(that is, \[C_V=\frac{\partial U}{\partial T},\quad C_P=\frac{\partial h}{\partial T},\] where  $U=V_0\rho_ta^3$, $h=V_0(\rho_t+P)a^3$, show that
<div class="NavFrame collapsed">
+
\[C_P=\frac{V_0}{4\pi G}\frac{H^2}{T'}\frac{j-1}{(1+z)^4},\]
 +
\[C_V=\frac{V_0}{8\pi G}\frac{H^2}{T'}\frac{2q-1}{(1+z)^4}.\]
 +
<!--<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
 
   </div>
 
   </div>
</div></div>
+
</div>--></div>
  
  
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 19 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
What signs of $C_p$ and $C_v$ are predicted by the $\Lambda-CDM$ model? ($q_{0\Lambda CDM}=-1+\frac32\Omega_m$, $j_{0\Lambda CDM}=1$ and experimentally, $\Omega_m=0.274\pm0.015$)
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\[C_P=0,\quad C_V<0.\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
<div id=""></div>
+
<div id="cg_20"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 20 ===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: cg_20</p>
 
+
In cosmology, the scale factor is sometimes presented as a power series
 +
\[a(t)=c_0|t-t_\odot|^{\eta_0}+c_1|t-t_\odot|^{\eta_1}+c_2|t-t_\odot|^{\eta_2}+c_3|t-t_\odot|^{\eta_3}+\ldots\]. Get analogous series for $H$ and $q$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">A partial solution reads:
 +
\[\dot a(t)=c_0\eta_0(t-t_\odot)^{\eta_0-1}+c_1\eta_1(t-t_\odot)^{\eta_1-1}+\ldots\]
 +
Also note: the most general lesson to be learned is this: If in the vicinity of any cosmological milestone, the input scale factor $a(t)$ is a generalized power series, then all physical observables ($H$, $q$, the Riemann tensor, etc.) will likewise be generalized power series, with related indicial exponents that can be calculated from the indicial exponents of the scale factor. Whether or not the particular physical observable then diverges at the cosmological milestone is "simply" a matter of calculating its dominant indicial exponent in terms of those occurring in the scale factor.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,706: Line 1,761:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 21 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
What values of the powers in the power series are required for the following singularities?
 +
<br/>a) Big bang/crunch (scale factor $a=0$)
 +
<br/>b) Big Rip (scale factor is infinite)
 +
<br/>c) Sudden singularity ($n$th derivative of the scale factor is infinite)
 +
<br/>d) Extremality event (derivative of scale factor $= 1$)
 +
\end{description}
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;"><br/>a) ($0<\eta_0<\eta_1\ldots$).
 +
<br/>b) ($\eta_0<\eta_1\ldots$), $\eta_0<0$ and $c_0\ne0$.
 +
<br/>c) $\eta_0=0$ and $\eta_1>0$ with $c_0>0$ and $\eta_1$ non-integer.
 +
<br/>d) $\eta_0=0$ and $\eta_i\in Z^+$.
 +
\end{description}</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,719: Line 1,783:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 22 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Analyze the possible behavior of the Hubble parameter around the cosmological milestones (hint: use your solution of problem [[#cg_20]]).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Taking the exact form of the Hubble parameter as a ratio of series, and keeping only the most dominant terms, we have (assuming that the first power coefficient isn't $0$)
 +
\[H=\frac{\dot a}a\sim\frac{c_0\eta_0(t-t_\odot)^{\eta_0-1}}{c_0(t-t_\odot)^{\eta_0}}=\frac{\eta_0}{t-t_\odot};\quad (\eta_0\ne0).\]
 +
When the first power coefficient is zero (which corresponds to either a sudden singularity or extremality event), since the next power coefficient must be greater (by definition), we have the following:
 +
\[H\sim\frac{c_1\eta_1(t-t_\odot)^{\eta_1-1}}{c_0}=\eta_1\frac{c_1}{c_0}(t-t_\odot)^{\eta_1-1};\quad (\eta_0=0;\ \eta-1>0).\]
 +
Combining all of this, we get the following:
 +
\[\lim_{t\to t_\odot}H=\left\{
 +
\begin{array}{lcl}
 +
+\infty & \eta_0>0; & {}\\
 +
sign(c_1)\infty & \eta_0=0; & \eta_1\in(0,1);\\
 +
c_1/c_0 & \eta_0=0; & \eta_1=1;\\
 +
0 & \eta_0=0; & \eta_1>1;\\
 +
-\infty & \eta_0<0. & {}\\
 +
\end{array}
 +
\right.\]
 +
Other things (cosmographic parameters, components of the Ricci tensor, validity of the Energy conditions) are analyzed analogously</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,732: Line 1,810:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 23 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Going outside of the bounds of regular cosmography, let's assume the validity of the Friedmann equations. It is sometimes useful to expand the Equation of State as a series (like $p=p_0+\kappa_0(\rho-\rho_0)+O[(\rho-\rho_0)^2],$) and describe the EoS parameter ($w9t)=p/\rho$) at arbitrary times through the cosmographic parameters.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\[w9t)=\frac p\rho=-\frac{H^2(1-2q)+kc^2/a^2}{3(H^2+kc^2/a^2)}= -\frac{(1-2q)+kc^2/(H^2a^2)}{3(1+kc^2/(H^2a^2))}.\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,745: Line 1,823:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 24 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Analogously to the previous problem, analyze the slope parameter \[\kappa=\frac{dp}{d\rho}.\] Specifically, we are interested in the slope parameter at the present time, since that is the value that is seen in the series expansion.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\[8\pi G_N=\frac{d\rho}{dt}=-6c^2H\left[(1+q)H^2+\frac{kc^2}{a^2}\right],\]
 +
\[8\pi G_N=\frac{dp}{dt}=2c^2H\left[(1-j)H^2+\frac{kc^2}{a^2}\right].\]
 +
Then
 +
\[\kappa_0=-\frac13\left[\frac{1-j_0+kc^2/(H_0^2a_0^2)}{1+q_0+kc^2/(H_0^2a_0^2)}\right]\]
 +
which approximates (using $H_0a_0/c\gg1$) to
 +
\[\kappa_0=-\frac13\left[\frac{1-j_0}{1+q_0}\right]\]
 +
We therefore see an important note: to get the FIRST term in the series expansion of the EOS contains the both the deceleration parameter and the jerk (third order observational term), the latter of which is very weakly bounded by observations. This is a significant problem in testing models (even with crude linear tests, as they require the slope parameter - see the previous problem)</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 1,758: Line 1,842:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem ===
+
=== Problem 25 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
+
Continuing the previous problem, let's look at the third order term - $d^2 p/d\rho^2$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Starting off, it's easy to see that
 +
\[\frac{d^2p}{d\rho^2}=\frac{\ddot p-\kappa\ddot\rho}{(\dot\rho)^2}.\]
 +
Then
 +
\begin{align}
 +
\nonumber\left.\frac{d^2p}{d\rho^2}\right|_0 & = -\frac{(1+kc^2/[H_0^2a_0^2])}{6\rho_0(1+q_0+kc^2/[H_0^2a_0^2])^3} \left\{s_0(1+q_0)+j_0(1+j_0+4q_0+q_0^2)+q_0(1+2q_0)\right.\\
 +
{} & \left.+(s_0+j_0+q_0+q_0j_0)\frac{kc^2}{H_0^2a_0^2}\right\}.\
 +
\end{align}
 +
In the approximation $H_0a_0/c\gg1$ this reduces to
 +
\[\left.\frac{d^2p}{d\rho^2}\right|_0 = -\frac{s_0(1+q_0)+j_0(1+j_0+4q_0+q_0^2)+q_0(1+2q_0)}{6\rho_0(1+q_0)^3}.\]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
 +
 +
 +
 +
<!--
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">

Revision as of 01:56, 1 April 2014

Contents


NEW Problems in Cosmo warm-up Category

Play with Numbers after Sivaram

Problem 1

problem id: Siv_1

(after C.Sivaram, Dark Energy may link the numbers of Rees, arXiv: 0710.4993) Given $\Lambda$-dominated Universe, the requirement that for various large scale structures (held together by self gravity) to form a variety of length scales, their gravitational self energy density should at least match the ambient vacuum energy repulsion, as was shown to imply [16. C Sivaram, Astr. Spc. Sci, 219, 135; IJTP, 33, 2407, 1994, 17. C Sivaram, Mod. Phys. Lett., 34, 2463, 1999] a scale invariant mass-radius relationship to the form (for the various structures): \[\frac M{R^2}\approx\sqrt\Lambda\frac{c^2} G.\] This equation predicts a universality of $M/R^2$ for a large variety of structures. Check this statement for such structures as a galaxy, a globular cluster, a galaxy cluster.


Problem 2

problem id: Siv_2

(after C.Sivaram, Scaling Relations for self-Similar Structures and the Cosmological Constant, arXiv: 0801.1218) In recent papers [13. Sivaram, C.: 1993a, Mod. Phys. Lett. 8,321.; 14. Sivaram, C.: 1993b, Astrophys. Spc. Sci. 207, 317.; 15. Sivaram, C.: 1993c, Astron. Astrophys. 275, 37.; 16. Sivaram, C.: 1994a, Astrophysics. Spc. Sci., 215, 185.; 17. Sivaram, C.: 1994b. Astrphysics .Spc .Sci., 215,191.; 18. Sivaram, C.: 1994c. Int. J. Theor. Phys. 33, 2407.], it was pointed out that the surface gravities of a whole hierarchy of astronomical objects (i.e. globular clusters, galaxies, clusters, super clusters, GMC's etc.) are more or less given by a universal value $a_0\approx cH_0\approx 10^{-8} cm\ s^{-2}$ a o ƒ° cHo ƒ° 10-8 cms-2. Thus \[a=\frac{GM}{R^2}\approx a_0\] for all these objects, $M$ being their typical mass and $R$ their typical radius. Also interestingly enough it was also pointed out [4. Sivaram, C.: 1982, Astrophysics. Spc. Sci. 88,507.; 5. Sivaram, C.: 1982, Amer. J. Phy. 50, 279.; 6. Sivaram, C.: 1983, Amer. J. Phys. 51, 277.; 7. Sivaram, C.: 1983, Phys. Lett. 60B, 181.] that the gravitational self energy of a typical elementary particle (hadron) was shown to be \[E_G\approx\frac{Gm^3 c}{\hbar}\approx\hbar H_0\] implying the same surface gravity value for the particle \[a_h=\frac{GM}{r^2}\approx \frac{Gm^3 c}{\hbar}\times\frac c\hbar\approx cH_0\approx a_0.\] Calculate actual value of the ratio \[\frac M{R^2}\approx\sqrt\Lambda\frac{c^2} G\sim1\] for such examples as a galaxy, whole Universe, globular cluster, a GMC, a supercluster, nuclei, an electron, Solar system, planetary nebula.



NEW Problems in Dark Energy Category

Single Scalar Cosmology

Single Scalar Cosmology

The discovery of the Higgs particle has confirmed that scalar fields play a fundamental role in subatomic physics. Therefore they must also have been present in the early Universe and played a part in its development. About scalar fields on present cosmological scales nothing is known, but in view of the observational evidence for accelerated expansion it is quite well possible that they take part in shaping our Universe now and in the future. In this section we consider the evolution of a flat, isotropic and homogeneous Universe in the presence of a single cosmic scalar field. Neglecting ordinary matter and radiation, the evolution of such a Universe is described by two degrees of freedom, the homogeneous scalar field $\varphi(t)$ and the scale factor of the Universe $a(t)$. The relevant evolution equations are the Friedmann and Klein-Gordon equations, reading (in the units in which $c = \hbar = 8 \pi G = 1$) \[ \frac{1}{2}\, \dot{\varphi}^2 + V = 3 H^2, \quad \ddot{\varphi} + 3 H \dot{\varphi} + V' = 0, \] where $V[\varphi]$ is the potential of the scalar fields, and $H = \dot{a}/a$ is the Hubble parameter. Furthermore, an overdot denotes a derivative w.r.t.\ time, whilst a prime denotes a derivative w.r.t.\ the scalar field $\varphi$.


Problem 1

problem id: SSC_0

Show that the Hubble parameter cannot increase with time in the single scalar cosmology.


Problem 2

problem id: SSC_00

Show that if the Universe is filled by a substance which satisfies the null energy condition then the Hubble parameter is a semi-monotonically decreasing function of time.


Problem 3

problem id: SSC_0_1

For single-field scalar models express the scalar field potential in terms of the Hubble parameter and its derivative with respect to the scalar field.


Problem 4

problem id: SSC_1

Obtain first-order differential equation for the Hubble parameter $H$ as function of $\varphi$ and find its stationary points.


Problem 5

problem id: SSC_2

Consider eternally oscillating scalar field of the form $\varphi(t) = \varphi_0 \cos \omega t$ and analyze stationary points in such a model.


Problem 6

problem id: SSC_3

Obtain explicit solution for the Hubble parameter in the model considered in the previous problem.


Problem 7

problem id: SSC_4

Obtain explicit time dependence for the scale factor in the model of problem #SSC_2.


Problem 8

problem id: SSC_5

Reconstruct the scalar field potential $V(\varphi)$ needed to generate the model of problem #SSC_2.


Problem 9

problem id: SSC_6_00

Describe possible final states for the Universe governed by a single scalar field at large times.


Problem 10

problem id: SSC_6_0

Formulate conditions for existence of end points of evolution in terms of the potential $V(\varphi)$.


Problem 11

problem id: SSC_6_1

Consider a single scalar cosmology described by the quadratic potential \[ V = v_0 + \frac{m^2}{2}\, \varphi^2. \] Describe all possible stationary points and final states of the Universe in this model.


Problem 12

problem id: SSC_7

Obtain actual solutions for the model of previous problem using the power series expansion \[ H[\varphi] = h_0 + h_1 \varphi + h_2 \varphi^2 + h_3 \varphi^3 + ... \] Consider the cases of $v_0 > 0$ and $v_0 < 0$.


Problem 13

problem id: SSC_8

Estimate main contribution to total expansion factor of the Universe.


Problem 14

problem id: SSC_9_0

Explain difference between end points and turning points of the scalar field evolution.


Problem 15

problem id: SSC_9

Show that the exponentially decaying scalar field \[ \varphi(t) = \varphi_0 e^{-\omega t} \] can give rise to unstable end points of the evolution.


Problem 16

problem id: SSC_10

Analyze all possible final states in the model of previous problem.


Problem 17

problem id: SSC_11

Express initial energy density of the model of problem #SSC_9 in terms of the $e$-folding number $N$.


Problem 18

problem id: SSC_12

Estimate mass of the particles corresponding to the exponential scalar field considered in problem #SSC_9.


Problem 19

problem id: SSC_13

Calculate the deceleration parameter for flat Universe filled with the scalar field in form of quintessence.


Problem 20

problem id: SSC_14_

When considering dynamics of scalar field $\varphi$ in flat Universe, let us define a function $f(\varphi)$ so that $\dot\varphi=\sqrt{f(\varphi)}$. Obtain the equation describing evolution of the function $f(\varphi)$. (T. Harko, F. Lobo and M. K. Mak, Arbitrary scalar field and quintessence cosmological models, arXiv: 1310.7167)



The Power-Law Cosmology

The Power-Law Cosmology

Problem 1

problem id: PWL_1

Show that for power law $a(t)\propto t^n$ expansion slow-roll inflation occurs when $n\gg1$.


Problem 2

problem id: PWL_2

Show that in the power-law cosmology the scale factor evolution $a\propto\eta^q$ in conformal time transforms into $a\propto t^p$ in physical (cosmic) time with \[p=\frac{q}{1+q}.\]


Problem 3

problem id: PWL_3

Show that if $a\propto\eta^q$ then the state parameter $w$ is related to the index $q$ by the following \[w=\frac{2-q}{3q}=const.\]



Hybrid Expansion Law

Hybrid Expansion Law

In problems #SSC_18 - #SSC_19_0 we follow the paper of Ozgur Akarsu, Suresh Kumar, R. Myrzakulov, M. Sami, and Lixin Xu4, Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints (arXiv:1307.4911) to study expansion history of Universe, using the hybrid expansion law---a product of power-law and exponential type of functions \[a(t)=a_0\left(\frac{t}{t_0}\right)^\alpha\exp\left[\beta\left(\frac{t}{t_0}-1\right)\right],\] where $\alpha$ and $\beta$ are non-negative constants. Further $a_0$ and $t_0$ respectively denote the scale factor and age of the Universe today.

Problem 1

problem id: SSC_18

Calculate Hubble parameter, deceleration parameter and jerk parameter for hybrid expansion law.


Problem 2

problem id: SSC_18_2

For hybrid expansion law find $a, H, q$ and $j$ in the cases of very early Universe $(t\to0)$ and for the late times $(t\to\infty)$.


Problem 3

problem id: SSC_18_3

In general relativity, one can always introduce an effective source that gives rise to a given expansion law. Using the ansatz of hybrid expansion law obtain the EoS parameter of the effective fluid.


Problem 4

problem id: SSC_19

We can always construct a scalar field Lagrangian which can mimic a given cosmic history. Consequently, we can consider the quintessence realization of the hybrid expansion law. Find time dependence for the the quintessence field $\varphi(t)$ and potential $V(t)$, realizing the hybrid expansion law. Obtain the dependence $V(\varphi)$.


Problem 5

problem id: SSC_19_1

Quintessence paradigm relies on the potential energy of scalar fields to drive the late time acceleration of the Universe. On the other hand, it is also possible to relate the late time acceleration of the Universe with the kinetic term of the scalar field by relaxing its canonical kinetic term. In particular this idea can be realized with the help of so-called tachyon fields, for which \[\rho=\frac{V(\varphi)}{\sqrt{1-\dot\varphi^2}},\quad p=-V(\varphi)\sqrt{1-\dot\varphi^2}.\] Find time dependence of the tachyon field $\varphi(t)$ and potential $V(t)$, realizing the hybrid expansion law. Construct the potential $V(\varphi)$.


Problem 6

problem id: SSC_19_2

Calculate Hubble parameter and deceleration parameter for the case of phantom field in which the energy density and pressure are respectively given by \[\rho =-\frac{1}{2}\dot{\varphi}^2+V(\varphi),\quad p =-\frac{1}{2}\dot{\varphi}^2-V(\varphi).\]


Problem 7

problem id: SSC_19_0

Solve the problem #SSC_19 for the case of phantom field.


Problem 8

problem id: SSC_19_12

Find EoS parameter for the case of phantom field.



Bianchi I Model

Bianchi I Model

(after Esra Russell, Can Battal Kılınç, Oktay K. Pashaev, Bianchi I Models: An Alternative Way To Model The Present-day Universe, arXiv:1312.3502)


Theoretical arguments and indications from recent observational data support the existence of an anisotropic phase that approaches an isotropic one. Therefore, it makes sense to consider models of a Universe with an initially anisotropic background. The anisotropic and homogeneous Bianchi models may provide adequate description of anisotropic phase in history of Universe. One particular type of such models is Bianchi type I (BI) homogeneous models whose spatial sections are flat, but the expansion rates are direction dependent, \[ds^2={c^2}dt^2-a^{2}_{1}(t)dx^2-a^{2}_{2}(t)dy^2-a^{2}_{3}(t)dz^2\] where $a_{1}$, $a_{2}$ and $a_{3}$ represent three different scale factors which are a function of time $t$.

Problem 1

problem id: bianchi_01

Find the field equations of the BI Universe.


Problem 2

problem id: bi_2

Reformulate the field equations of the BI Universe in terms of the directional Hubble parameters. \[H_1\equiv\frac{\dot{a_1}}{a_1},\ H_2\equiv\frac{\dot{a_2}}{a_2},\ H_3\equiv\frac{\dot{a_3}}{a_3}.\]


Problem 3

problem id:

The BI Universe has a flat metric, which implies that its total density is equal to the critical density. Find the critical density.


Problem 4

problem id:

Obtain an analogue of the conservation equation $\dot\rho+3H(\rho+p)=0$ for the case of the BI Universe.


Problem 5

problem id:

Obtain the evolution equation for the mean of the three directional Hubble parameters $\bar H$.


Problem 6

problem id:

Show that the system of equations for the BI Universe \begin{align} \nonumber H_1H_2+H_1H_3+H_2H_3 & =\rho,\\ \nonumber \dot H_1+ H_1^2 +\dot H_3+ H_3^2 +H_1H_3& =-p,\\ \nonumber \dot H_1+ H_1^2 +\dot H_2+ H_2^2 +H_1H_2& =-p,\\ \nonumber \dot H_2+ H_2^2 +\dot H_3+ H_3^2 +H_2H_3& =-p, \end{align} can be transformed to the following \begin{align} \nonumber H_1H_2+H_1H_3+H_2H_3 & =\rho,\\ \nonumber \dot H_1+ 3H_1\bar H & =\frac12(\rho-p),\\ \nonumber \dot H_2+ 3H_2\bar H & =\frac12(\rho-p),\\ \nonumber \dot H_3+ 3H_3\bar H & =\frac12(\rho-p). \end{align}


Problem 7

problem id:

Show that the mean of the three directional Hubble parameters $\bar H$ is related to the elementary volume of the BI Universe $V\equiv a_1a_2a_3$ as \[\bar H=\frac13\frac{\dot V}{V}.\]


Problem 8

problem id:

Obtain the volume evolution equation of the BI model.


Problem 9

problem id:

Find the generic solution of the directional Hubble parameters.


Radiation dominated BI model

Problem 10

problem id:

Find the energy density of the radiation dominated BI Universe in terms of volume element $V_r$.


Problem 11

problem id:

Find the mean Hubble parameter of the radiation dominated case.


Problem 12

problem id:

Find the directional expansion rates of the radiation dominated model.


Problem 13

problem id:

Find time dependence for the scale factors $a_i$ in the radiation dominated BI Universe.


Problem 14

problem id: bianchi_02

Find the partial energy densities for the two components of the BI Universe dominated by radiation and matter in terms of volume element $V_{rm}$.


Problem 15

problem id: bianchi_03

Obtain time evolution equation for the total volume $V_{rm}$ in the BI Universe dominated by radiation and matter.


Problem 16

problem id: bianchi_04

Using result of the previous problem, obtain a relation between the mean Hubble parameter and the volume element.



NEW problems in Dark Matter Category

Generalized models of unification of dark matter and dark energy

Generalized models of unification of dark matter and dark energy

(see N. Caplar, H. Stefancic, Generalized models of unification of dark matter and dark energy (arXiv: 1208.0449))

Problem 1

problem id: gmudedm_1

The equation of state of a barotropic cosmic fluid can in general be written as an implicitly defined relation between the fluid pressure $p$ and its energy density $\rho$, \[F(\rho,p)=0.\] Find the speed of sound in such fluid.


Problem 2

problem id: gmudedm_2

For the barotropic fluid with a constant speed of sound $c_s^2=const$ find evolution of the parameter of EOS, density and pressure with the redshift.



Tutti Frutti

New problem in Cosmo warm-up Category:

Problem 1

problem id: TF_1

Construct planck units in a space of arbitrary dimension.


New problem in Inflation Category:

Problem 2

problem id: TF_2

Show that for power law $a(t)\propto t^n$ expansion slow roll inflation occurs when $n\gg1$.


Problem 3

problem id: TF_3

Find the general condition to have accelerated expansion in terms of the energy densities of the darks components and their EoS parameters


NEW problems in Observational Cosmology Category

Universe after PLANCK

Universe after PLANCK

According to the "PLANCK" data the Universe's composition is the following: $4,89 \%$ of usual (baryon) matter (the previous estimate according to WMAP data was $4,6 \%$), $26.9 \%$ of dark matter (instead of previous $22,7 \%$) and $68.25 \%$ (instead of $73\%$) of dark energy. The Hubble constant was also corrected; the new value is $ H_0 = 67.11 km\ s^{-1}\ Mpc^{-1}$ (the previous estimate was $70 km\ s^{-1}\ Mpc^{-1}$).


Problem 1

problem id:

Compare estimates of the age of Universe according to the "PLANCK" data and that of WMAP.


Problem 2

problem id:

Estimate the age of Universe corresponding to termination of the radiation dominated epoch.


Problem 3

problem id:

Estimate the age of Universe corresponding to termination of the matter dominated epoch.




Exact Solutions

Exact Solutions


In a row of the problems below [following the paper Marco A. Reyes, On exact solutions to the scalar field equations in standard cosmology, arXiv: 0806.2292] we present a simple algebraic method to find exact solutions for a wide variety of scalar field potentials. Let us consider the function $V_a(\varphi)$ defined as \begin{equation}\label{es_1} V_a(\varphi)\equiv V(\varphi)+\frac12\dot\varphi^2. \end{equation} Derivative of this function reads \[\frac{dV_a}{d\varphi}=\frac{dV}{d\varphi}+\ddot\varphi.\] Hence, equations \[H^2=\frac12\left(\frac12\dot\varphi^2+V(\varphi)\right),\] \[\ddot\varphi+3H\dot\varphi+\frac{dV}{d\varphi}=0\] can now be rewritten as \begin{align} \label{es_4}3H^2 & =V_a,\\ \label{es_5}3H\dot\varphi & =-\frac{dV_a}{d\varphi}. \end{align} To solve them, note that eq.(\ref{es_4}) defines $H$ as a function of $\varphi$, which when inserted into eq.(\ref{es_5}), gives the scalar field $\varphi(t)$ as a function of $t$, at least in quadratures \[-3H(\varphi)\left(\frac{dV_a}{d\varphi}\right)^{-1}d\varphi=dt.\] Finally, inserting $\varphi(t)$ into eqs.(\ref{es_1}) and (\ref{es_4}) gives $V(\varphi)$ and $a(t)$, respectively, and the solution is completed.

One could also use $H(t)$ to determine $\varphi(t)$, since \[\dot H=-\frac12\dot\varphi^2.\] implies that \[\Delta\varphi(t)=\pm\int\sqrt{-2\dot H}dt.\] Since $V_a(t)=3H^2(t)$, a complete knowledge of $H(t)$ fully determines the solution to the problem.


Problem 1

problem id:

For $H(t)=\alpha/t$ find $V(\varphi)$ and $\Delta\varphi(t)$.


Problem 2

problem id:

Reconstruct $V(\varphi)$ and find $\varphi(t)$ and $a(t)$ for $V_a=\lambda\varphi^2$.


Problem 3

problem id:

Reconstruct $V(\varphi)$ and find $\varphi(t)$ and $a(t)$ for $V_a=\lambda\varphi^4$.


Problem 4

problem id:

Reconstruct $V(\varphi)$ and find $\varphi(t)$ and $a(t)$ for $V_a=\lambda\varphi^n$, $n>2$.



NEW Problems in Dynamics of the Expanding Universe Category

Cosmography



Problem 1

problem id:

Using $d_l (z)=a_0 (1+z)f(\chi)$, where \[\chi=\frac1{a_0}\int\limits_0^z\frac{du}{H(u)},\quad f(\chi)=\left\{\begin{array}{rcl} \chi & - & flat\ case\\ \sinh(\chi) & - & open\ case\\ \sin(\chi) & - & closed\ case. \end{array}\right.\]

   find the standard luminosity distance-versus-redshift relation up to the second order in $z$:
   \[d_L=\frac z{H_0}\left[1+\left(\frac{1-q_0}2\right)z+O(z^2)\right].\]


Problem 2

problem id:

Many supernovae give data in the $z>1$ redshift range. Why is this a problem for the above formula for the $z$-redshift? (Problems 2) - 10) are all from the Visser convergence article)


Problem 3

problem id:

Give physical reasons for the above divergence at $z=-1$.


Problem 4

problem id:

Sometimes a "pivot" is used: \[z=z_{pivot}+\Delta z,\] \[\frac1{1+z_{pivot}+\Delta z}=\frac{a(t)}{a_0}=1+H_0(t-t_0)-\frac1{2!}{q_0 H_0^2}(t-t_0)^2+\frac1{3!}{j_0 H_0^3}(t-t_0)^3+O(|t-t_0|^4).\] What is the convergence radius now?


Problem 5

problem id:

The most commonly used definition of redshift is \[z=\frac{\lambda_0-\lambda_e}\lambda_e=\frac{\Delta\lambda}\lambda_e.\] Let's introduce a new redshift: \[z=\frac{\lambda_0-\lambda_e}\lambda_0=\frac{\Delta\lambda}\lambda_0.\]


Problem 6

problem id:

Argue why, on physical grounds, we can't extrapolate beyond $y=1$.


Problem 7

problem id: cg_7

The most commonly used distance is the luminosity distance, and it is related to the distance modulus in the following way: \[\mu_D=5\log_10[d_L/(10\ pc)]=5\log_10[d_L/(1\ Mpc)]+25.\]

   However, alternative distances are also used (for a variety of mathematical purposes):


1) The "photon flux distance": \[d_F=\frac{d_L}{(1+z)^{1/2}}.\]
2) The "photon count distance": \[d_P=\frac{d_L}{(1+z)}.\]
3) The "deceleration distance": \[d_Q=\frac{d_L}{(1+z)^{3/2}}.\]
4) The "angular diameter distance": \[d_A=\frac{d_L}{(1+z)^{2}}.\]

Obtain the Hubble law for these distances (in terms of $z$-redshift, up to the second power by z): \begin{align} \nonumber d_F(z) & =d_H z\left\{1-\frac12q_0z+O(z^2)\right\}.\\ \nonumber d_P(z) & =d_H z\left\{1-\frac12(1+q_0)z+O(z^2)\right\}.\\ \nonumber d_Q(z) & =d_H z\left\{1-\frac12(2+q_0)z+O(z^2)\right\}.\\ \nonumber d_A(z) & =d_H z\left\{1-\frac12(3+q_0)z+O(z^2)\right\}. \end{align}


Problem 8

problem id:

Do the same for the distance modulus directly.


Problem 9

problem id:

Do problem #cg_7 but for $y$-redshift.


Problem 10

problem id: cg_10

Obtain the THIRD-order luminosity distance expansion in terms of $z$-redshift


Problem 11

problem id:

Alternative (if less physically evident) redshifts are also viable. One promising redshift is the $y_4$ redshift: $y_4 = \arctan(y)$. Obtain the second order redshift formula for $d_L$ in terms of $y_4$.


Problem 12

problem id:

$H_0a_0/c\gg1$ is a generic prediction of inflationary cosmology. Why is this an obstacle in proving/measuring the curvature of pace based on cosmographic methods?


Problem 13

problem id:

When looking at the various series formulas, you might be tempted to just take the highest-power formulas you can get and work with them. Why is this not a good idea?


Problem 14

problem id:

Using the definition of the redshift, find the ratio \[\frac{\Delta z}{\Delta t_{obs}},\] called "redshift drift" through the Hubble Parameter for a fixed/commoving observer and emitter: \[\int\limits_{t_s}^{t_o}\frac{dt}{a(t)}=\int\limits_{t_s+\Delta t_s}^{t_o+\Delta t_o}\frac{dt}{a(t)}.\]


Problem 15

problem id:

A photon's physical distance traveled is \[D=c\int dt=c(t_0-t_s).\] Using the definition of the redshift, construct a power series for $z$-redshift based on this physical distance.


Problem 16

problem id:

Invert result of the previous problem (up to $z^3$).


Problem 17

problem id:

Obtain a power series (in $z$) breakdown of redshift drift up to $z^3$ (hint: use $(dH)/(dz)$ formulas)


Problem 18

problem id:

Using the Friedmann equations, continuity equations, and the standard definitions for heat capacity(that is, \[C_V=\frac{\partial U}{\partial T},\quad C_P=\frac{\partial h}{\partial T},\] where $U=V_0\rho_ta^3$, $h=V_0(\rho_t+P)a^3$, show that \[C_P=\frac{V_0}{4\pi G}\frac{H^2}{T'}\frac{j-1}{(1+z)^4},\] \[C_V=\frac{V_0}{8\pi G}\frac{H^2}{T'}\frac{2q-1}{(1+z)^4}.\]


Problem 19

problem id:

What signs of $C_p$ and $C_v$ are predicted by the $\Lambda-CDM$ model? ($q_{0\Lambda CDM}=-1+\frac32\Omega_m$, $j_{0\Lambda CDM}=1$ and experimentally, $\Omega_m=0.274\pm0.015$)


Problem 20

problem id: cg_20

In cosmology, the scale factor is sometimes presented as a power series \[a(t)=c_0|t-t_\odot|^{\eta_0}+c_1|t-t_\odot|^{\eta_1}+c_2|t-t_\odot|^{\eta_2}+c_3|t-t_\odot|^{\eta_3}+\ldots\]. Get analogous series for $H$ and $q$.


Problem 21

problem id:

What values of the powers in the power series are required for the following singularities?
a) Big bang/crunch (scale factor $a=0$)
b) Big Rip (scale factor is infinite)
c) Sudden singularity ($n$th derivative of the scale factor is infinite)
d) Extremality event (derivative of scale factor $= 1$) \end{description}


Problem 22

problem id:

Analyze the possible behavior of the Hubble parameter around the cosmological milestones (hint: use your solution of problem #cg_20).


Problem 23

problem id:

Going outside of the bounds of regular cosmography, let's assume the validity of the Friedmann equations. It is sometimes useful to expand the Equation of State as a series (like $p=p_0+\kappa_0(\rho-\rho_0)+O[(\rho-\rho_0)^2],$) and describe the EoS parameter ($w9t)=p/\rho$) at arbitrary times through the cosmographic parameters.


Problem 24

problem id:

Analogously to the previous problem, analyze the slope parameter \[\kappa=\frac{dp}{d\rho}.\] Specifically, we are interested in the slope parameter at the present time, since that is the value that is seen in the series expansion.


Problem 25

problem id:

Continuing the previous problem, let's look at the third order term - $d^2 p/d\rho^2$.