Difference between revisions of "New problems"

From Universe in Problems
Jump to: navigation, search
(NEW Problems in Dynamics of the Expanding Universe Category)
Line 1: Line 1:
 
__TOC__
 
__TOC__
 +
 +
[[Exactly_Integrable_n-dimensional_Universes Exactly Integrable n-dimensional Universes]]
 +
 +
<div id="gnd_1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_1</p>
 +
Derive Friedmann equations for the spatially n-dimensional Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Consider an $(n+1)$-dimensional  homogeneous and isotropic
 +
Lorentzian
 +
spacetime with the metric
 +
\begin{equation} \label{1}
 +
ds^2=g_{\mu\nu} dx^\mu dx^\nu=- dt^2+a^2(t)g_{ij} d x^i d x^j,\quad i,j=1,\dots,n,
 +
\end{equation}
 +
where $t$ is the cosmological (or cosmic) time and $g_{ij}$ is the metric of the $n$-dimensional Riemannian manifold
 +
$M$ of constant curvature characterized by an indicator, $k=-1,0,1$;
 +
$M$ is an $n$-hyperboloid, the flat space $\Bbb R^n$, or an $n$-sphere, with the
 +
respective metric
 +
\begin{equation} \label{2}
 +
g_{ij} d x^i d x^j=\frac1{1-kr^2}\, d r^2+r^2\, d\Omega^2_{n-1},
 +
\end{equation}
 +
where $r>0$ is the radial variable and $d\Omega_{n-1}^2$ denotes the canonical metric of the unit
 +
sphere $S^{n-1}$. The Einstein equations:
 +
\begin{equation} \label{3}
 +
G_{\mu\nu}+\Lambda g_{\mu\nu}=8\pi G T_{\mu\nu},
 +
\end{equation}
 +
where $G_{\mu\nu}$ is the Einstein tensor, $G$ the universal gravitational constant, and $\Lambda$ the cosmological constant, the speed of light is set to unity, and $T_{\mu\nu}$ is the
 +
energy-momentum tensor of an ideal cosmological fluid given by
 +
\begin{equation} \label{4}
 +
T^{\mu\nu}=\mbox{diag}\{\rho_m,p_m,\dots,p_m\},
 +
\end{equation}
 +
with $\rho_m$ and $p_m$ the $t$-dependent matter energy density and pressure. Inserting the metric (\ref{1})--(\ref{2}) into (\ref{3})
 +
we arrive at the Friedman equations
 +
\begin{equation}\label{5}
 +
H^2=\frac{16\pi G}{n(n-1)}\rho-\frac k{a^2},
 +
\end{equation}
 +
\begin{equation}
 +
\dot{H}=-\frac{8\pi G}{n-1}(\rho+p)+\frac k{a^2},\label{6}
 +
\end{equation}
 +
in which
 +
\begin{equation} \label{7}
 +
H=\frac{\dot{a}}a,
 +
\end{equation}
 +
denotes the usual Hubble "constant", $\dot{f}=df/dt$, and $\rho,p$ are the effective energy
 +
density and pressure, related to $\rho_m,p_m$ through:
 +
\begin{equation} \label{8}
 +
\rho=\rho_m+\frac{\Lambda}{8\pi G},\quad p=p_m-\frac{\Lambda}{8\pi G}.
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="gnd_2"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
 +
=== Problem 2 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_2</p>
 +
Obtain the energy conservation law for the case of n-dimensional Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">With (\ref{1}) and (\ref{4}) and (\ref{8}), the energy-conservation law, $\nabla_\nu T^{\mu\nu}=0$, takes the form
 +
\begin{equation} \label{9}
 +
\dot{\rho}_m+n(\rho_m+p_m)H=0.
 +
\end{equation}
 +
It is readily seen that (\ref{5}) and (\ref{9}) imply (\ref{6}). In other words, the full cosmological
 +
governing equations consist of (\ref{5}) and (\ref{9}) only.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="gnd_3"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 3 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_3</p>
 +
Obtain relation between the energy density and scale factor in the case of a two-component n-dimensional Universe dominated by the cosmological constant and a barotropic fluid.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Recall that the perfect-fluid cosmological model spells out a relation between
 +
the energy density $\rho_m$ and pressure $p_m$ of the matter source expressed by the so-called
 +
barotropic equation of state,
 +
\begin{equation} \label{10}
 +
p_m=w \rho_m,
 +
\end{equation}
 +
where $w$ is a constant so that $w=0$ leads to a vanishing pressure, $p_m=0$, corresponding to
 +
the dust model; $w=-1$ the vacuum model, and $w=1/n$ the radiation-dominated model.
 +
 +
Inserting (\ref{10}) into (\ref{9}), we have
 +
\begin{equation}\label{11}
 +
\dot{\rho}_m+n(1+w)\rho_m \frac{\dot{a}}a=0,
 +
\end{equation}
 +
which can be integrated to yield
 +
\begin{equation}\label{12}
 +
\rho_m=\rho_0 a^{-n(1+w)},
 +
\end{equation}
 +
where $\rho_0>0$ is an integration constant. Using (\ref{12}) in (\ref{8}), we arrive at
 +
the relation
 +
\begin{equation}\label{13}
 +
\rho=\rho_0 a^{-n(1+w)}+\frac{\Lambda}{8\pi G}.
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="gnd_4"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 4 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_4</p>
 +
Obtain equation of motion for the scale factor for the previous problem.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">From (\ref{5}) and (\ref{13}), we get the following equation of motion for the scale factor $a$:
 +
\begin{equation} \label{14}
 +
\dot{a}^2=\frac{16\pi G\rho_0}{n(n-1)}a^{-n(1+w)+2}+\frac{2\Lambda}{n(n-1)} a^2-k.
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
'''To integrate (\ref{14}), we recall Chebyshev's  theorem:'''
 +
 +
'''For rational numbers $p,q,r$ ($r\neq0$) and nonzero real numbers $\alpha,\beta$, the integral $\int x^p(\alpha+\beta x^r)^q\,d x$ is elementary if and only if at least one of the quantities'''
 +
\begin{equation}\label{cd}
 +
\frac{p+1}r,\quad q,\quad \frac{p+1}r+q,
 +
\end{equation}
 +
'''is an integer.'''
 +
 +
'''Another way to see the validity of the Chebyshev theorem is to represent the integral of concern by a hypergeometric function such that when a quantity in (\ref{cd}) is an integer the hypergeometric function is reduced into an elementary function. Consequently, when $k=0$ or $\Lambda=0$, and $w$ is rational, the Chebyshev theorem enables us to know that, for exactly what values of $n$ and $w$, the equation (\ref{14}) may be integrated.'''
 +
 +
 +
<div id="gnd_4_0"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_4_0</p>
 +
Obtain analytic solutions for the equation of motion for the scale factor of the previous problem for spatially flat ($k=0$) Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Rewrite equation (\ref{14}) as
 +
\begin{equation} \label{15}
 +
\dot{a}=\pm\sqrt{c_0 a^{-n(1+w)+2}+\Lambda_0 a^2},\quad c_0=\frac{16\pi G\rho_0}{n(n-1)},\quad\Lambda_0=\frac{2\Lambda}{n(n-1)}.
 +
\end{equation}
 +
Integration of (\ref{15}) gives
 +
\begin{equation} \label{15a}
 +
\pm\int a^{-1}\left(c_0 a^{-n(1+w)}+\Lambda_0 \right)^{-\frac12}d a=t+C.
 +
\end{equation}
 +
It is clear that the integral on the left-hand side of (\ref{15a}) satisfies the integrability condition stated in the Chebyshev theorem for any $n$ and any rational $w$.
 +
 +
We have just seen that (\ref{15}) can be integrated directly for any rational $w$. Apply $a>0$ and get from (\ref{15}) the equation
 +
\begin{equation} \label{16}
 +
\frac{d}{d t}\ln a=\pm\sqrt{c_0 a^{-n(1+w)}+\Lambda_0},
 +
\end{equation}
 +
or equivalently,
 +
\begin{equation}\label{17}
 +
\dot{u}=\pm\sqrt{c_0 e^{-n(1+w)u}+\Lambda_0},\quad u=\ln a.
 +
\end{equation}
 +
Set
 +
\begin{equation}\label{18}
 +
\sqrt{c_0 e^{-n(1+w)u}+\Lambda_0}=v.
 +
\end{equation}
 +
Then
 +
\begin{equation}\label{19}
 +
u=\frac{\ln c_0}{n(1+w)}-\frac 1{n(1+w)} \ln(v^2-\Lambda_0).
 +
\end{equation}
 +
Inserting (\ref{19}) into (\ref{17}), we find
 +
\begin{equation}\label{20}
 +
\dot{v}=\mp\frac12 n(1+w)(v^2-\Lambda_0),
 +
\end{equation}
 +
whose integration gives rise to the expressions
 +
\begin{equation} \label{21}
 +
v(t)=\left\{\begin{array}{cc} \frac{v_0}{1\pm \frac12 n(1+w)v_0t}, & \Lambda_0=0;\\
 +
&\\
 +
\sqrt{\Lambda_0}\frac{1+C_0 e^{\mp n(1+w)\sqrt{\Lambda_0} t}}{1-C_0 e^{\mp n(1+w)\sqrt{\Lambda_0} t}}, \quad C_0=\frac{v_0-\sqrt{\Lambda_0}}{v_0+\sqrt{\Lambda_0}}, & \Lambda_0>0;\\
 +
&\\
 +
\sqrt{-\Lambda_0}\tan\left(\mp\frac12 n(1+w)\sqrt{-\Lambda_0} t +\arctan\frac{v_0}{\sqrt{-\Lambda_0}}\right), &
 +
\Lambda_0<0,
 +
\end{array}
 +
\right.
 +
\end{equation}
 +
where $v_0=v(0)$. Hence, in terms of $v$, we obtain the time-dependence of the scale factor $a$:
 +
\begin{equation} \label{22}
 +
a^{n(1+w)}(t)=\frac{8\pi G \rho_0}{\frac12 n(n-1)v^2(t)-\Lambda}.
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="gnd_5"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 6 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_5</p>
 +
Use the analytic solutions obtained in the previous problem to study cosmology with $w>-1$ and $a(0)=0$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">When $\Lambda=0$, we combine (\ref{21}) and (\ref{22}) to get
 +
\begin{equation} \label{x1}
 +
a^{n(1+w)}(t)=4\pi G\rho_0\left(\frac n{n-1}\right)(1+w)^2 t^2.
 +
\end{equation}
 +
When $\Lambda>0$, we similarly obtain
 +
\begin{equation} \label{x2}
 +
a^{n(1+w)}(t)=\frac{8\pi G\rho_0}{\Lambda}\sinh^2\left(\sqrt{\frac{n\Lambda}{2(n-1)}}(1+w) t\right).
 +
\end{equation}
 +
Both results (\ref{x1}) and (\ref{x2}) lead to an expanding Universe.
 +
 +
We now consider the case when $\Lambda<0$ and rewrite (\ref{22}) as
 +
\begin{equation} \label{23}
 +
a^{n(1+w)}(t)=\frac{8\pi G \rho_0}{(-\Lambda)}\cos^2\left(\sqrt{\frac{n(-\Lambda)}{2(n-1)} }(1+w)t \mp\arctan\sqrt{\frac{n(n-1)}{-2\Lambda}}\, v_0\right).
 +
\end{equation}
 +
 +
If we require $a(0)=0$, then (\ref{23}) leads to
 +
\begin{equation} \label{24}
 +
a^{n(1+w)}(t)=\frac{8\pi G \rho_0}{(-\Lambda)}\sin^2\sqrt{\frac{n(-\Lambda)}{2(n-1)} }(1+w)t,
 +
\end{equation}
 +
which gives rise to a periodic Universe so that the scale factor $a$ reaches its maximum $a_m$,
 +
\begin{equation} \label{25}
 +
a^{n(1+w)}_m=\frac{8\pi G \rho_0}{(-\Lambda)},
 +
\end{equation}
 +
at the times
 +
\begin{equation}\label{26}
 +
t=t_{m,k}=\left(\frac\pi2+k\pi\right)\frac1{(1+w)}\sqrt{\frac{2(n-1)}{n(-\Lambda)}},\quad k\in\Bbb Z,
 +
\end{equation}
 +
and shrinks to zero at the times
 +
\begin{equation}\label{27}
 +
t=t_{0,k}=\frac{k\pi}{(1+w)}\sqrt{\frac{2(n-1)}{n(-\Lambda)}},\quad k\in\Bbb Z.
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="gnd_6"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_6</p>
 +
Use results of the previous problem to calculate the deceleration $q=-a\ddot a/\dot a^2$ parameter.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{equation} %\label{21}
 +
q(t)=\left\{\begin{array}{cc} \frac n2 (1+w)-1, & \Lambda_0=0;\\
 +
&\\
 +
\frac{n(1+w)}{2\cosh^2\left(\sqrt{\frac{n\Lambda}{2(n-1)}}(1+w)t\right)}-1, & \Lambda_0>0;\\
 +
&\\
 +
\frac{n(1+w)}{2\cos^2\left(\sqrt{\frac{n\Lambda}{2(n-1)}}(1+w)t\right)}-1, &
 +
\Lambda_0<0.
 +
\end{array}
 +
\right.
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="gnd_4_1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 8 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_4_1</p>
 +
Obtain the exact solvability conditions for the case $\Lambda=0$ in equation (\ref{14}) (see problem [[#gnd_4]] ).
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The equation (\ref{14}) now reads
 +
\begin{equation} \label{32}
 +
\dot{a}^2=\frac{16\pi G\rho_0}{n(n-1)}a^{-n(1+w)+2}-k.
 +
\end{equation}
 +
 +
In order to apply Chebyshev's  theorem, we now assume that $w$ is rational. Thus we see that the question whether (\ref{32}) may be integrated in cosmological time is equivalent to whether
 +
\begin{eqnarray}
 +
I&=&\int a^{\frac12 n(1+w)-1}\left(-k a^{n(1+w)-2}+\sigma\right)^{-\frac12}\, d a\nonumber\\
 +
&=&\frac2{n(1+w)}\int \left(-k u^{\gamma}+\sigma\right)^{-\frac12}\, d u,\quad u=a^{\frac12 n(1+w)},\quad\sigma=\frac{16\pi G\rho_0}{n(n-1)},\label{33}
 +
\end{eqnarray}
 +
is an elementary function of $u$, where
 +
\begin{equation} \label{34}
 +
\gamma=2\left(1-\frac2{n(1+w)}\right).
 +
\end{equation}
 +
By (\ref{34}), we see that (\ref{33}) is not elementary
 +
unless $1/\gamma$ or $(2-\gamma)/(2\gamma)$ is an integer. The case when $\gamma=0$ or $w=(2-n)/n$ is trivial since it renders $a(t)$ a linear function
 +
through (\ref{32}). That is, (\ref{32}) may only be
 +
integrated directly in cosmological time when $w$ satisfies one of the following:
 +
\begin{eqnarray}
 +
w&=&\frac{4N}{n(2N-1)}  -1,\quad N=0,\pm1,\pm2,\dots;\\
 +
w&=&\frac2n+\frac1{nN}-1,\quad N=\pm1,\pm2,\dots.
 +
\end{eqnarray}
 +
In particular, in the special situations when $n=3$, we have
 +
\begin{equation}
 +
w=-1,\dots,-\frac23,-\frac59,-\frac12,-\frac7{15},-\frac49,-\frac37,\dots,-\frac29,-\frac15,-\frac16,-\frac19,0,\frac13,
 +
\end{equation}
 +
so that $-1$ and $-1/3$ are the only limiting points.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="gnd_4_2"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
 +
=== Problem 9 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_4_2</p>
 +
Obtain the explicit solutions for the case $n=3$ and $w=-5/9$ in the previous problem.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The equation (\ref{33}) now becomes
 +
\begin{equation}
 +
I=\frac32\int(-k u^{-1}+\sigma)^{-\frac12}\,d u,\quad u=a^{\frac23}.
 +
\end{equation}
 +
 +
When $k=1$ (closed Universe), we may use the substitutions $U=\sqrt{\sigma u-1}$
 +
to carry out the integration, which gives us the explicit solution
 +
\begin{eqnarray} \label{41}
 +
&&a^{\frac13}\sqrt{\sigma a^{\frac23}-1}-a_0^{\frac13}\sqrt{\sigma a_0^{\frac23}-1}
 +
+\frac1{\sqrt{\sigma}}\ln\left(\frac{\sqrt{\sigma a^{\frac23}-1}+\sqrt{\sigma} a^{\frac13}}{\sqrt{\sigma a_0^{\frac23}-1}+\sqrt{\sigma} a_0^{\frac13}}\right)=\frac23\sigma t,\\
 +
&&\quad t\geq0, \quad a_0=a(0),\nonumber
 +
\end{eqnarray}
 +
where $a_0$ satisfies the consistency condition $\sigma a_0^{\frac23}\geq1$ or
 +
\begin{equation}
 +
a_0\geq\left(\frac3{8\pi G \rho_0}\right)^{\frac32},
 +
\end{equation}
 +
which spells out minimum size of the Universe in terms of $\rho_0$ whose initial energy density in view of (\ref{12}) is given by
 +
\begin{equation}
 +
\rho_m(0)=\frac{64}9 \pi^2 G^2\rho^3_0.
 +
\end{equation}
 +
 +
When $k=-1$ (open Universe), we may likewise use the substitutions $U=\sqrt{\sigma u+1}$  to obtain the solution
 +
\begin{eqnarray} \label{44}
 +
&&a^{\frac13}\sqrt{\sigma a^{\frac23}+1}-a_0^{\frac13}\sqrt{\sigma a_0^{\frac23}+1}
 +
-\frac1{\sqrt{\sigma}}\ln\left(\frac{\sqrt{\sigma a^{\frac23}+1}+\sqrt{\sigma} a^{\frac13}}{\sqrt{\sigma a_0^{\frac23}+1}+\sqrt{\sigma} a_0^{\frac13}}\right)=\frac23\sigma t,\\
 +
&&\quad t\geq0, \quad a_0=a(0),\nonumber
 +
\end{eqnarray}
 +
where no restriction is imposed on the initial value of the scale factor $a=a(t)$. In particular, if
 +
we adopt the big bang scenario, we can set $a_0=0$ to write down the special solution
 +
\begin{equation}
 +
a^{\frac13}\sqrt{\sigma a^{\frac23}+1}
 +
-\frac1{\sqrt{\sigma}}\ln\left({\sqrt{\sigma a^{\frac23}+1}+\sqrt{\sigma} a^{\frac13}}\right)=\frac23\sigma t,\quad t\geq0.
 +
\end{equation}
 +
 +
The solutions (\ref{41}) and (\ref{44}) may  collectively and  explicitly be recast in the form of an elegant single formula:
 +
\begin{eqnarray} \label{44a}
 +
&&a^{\frac13}\sqrt{\sigma a^{\frac23}-k}-a_0^{\frac13}\sqrt{\sigma a_0^{\frac23}-k}
 +
+\frac{k}{\sqrt{\sigma}}\ln\left(\frac{\sqrt{\sigma a^{\frac23}-k}+\sqrt{\sigma} a^{\frac13}}{\sqrt{\sigma a_0^{\frac23}-k}+\sqrt{\sigma} a_0^{\frac13}}\right)=\frac23\sigma t,\\
 +
&&\quad t\geq0, \quad a_0=a(0),\quad k=\pm1.\nonumber
 +
\end{eqnarray}
 +
 +
We see that, in both closed and open situations, $k=\pm1$, respectively, the Universe grows following a power law
 +
of the type $a(t)=\mbox{O}(t^{\frac32})$
 +
for all large time so that
 +
a greater Newton's constant or initial energy density gives rise to a greater growth rate.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="gnd_10"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
 +
=== Problem 10 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_10</p>
 +
Rewrite equation of motion for the scale factor (\ref{14}) in terms of the conformal time.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{equation} \label{48}
 +
({a}')^2=\frac{16\pi G\rho_0}{n(n-1)}a^{-n(1+w)+4}+\frac{2\Lambda}{n(n-1)} a^4-ka^2.
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="gnd_11"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 11 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_11</p>
 +
Find the rational values of the equation of state parameter $w$ which provide exact integrability of the equation (\ref{48}) with $k=0$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">When $k=0$, the conformal time version of (\ref{15}) reads
 +
\begin{equation} \label{49}
 +
a'=\pm a^2\sqrt{c_0 a^{-n(1+w)}+\Lambda_0 },
 +
\end{equation}
 +
whose integration is
 +
\begin{equation} \label{50}
 +
\pm\int a^{-2}\left(c_0 a^{-n(1+w)}+\Lambda_0 \right)^{-\frac12}d a=\eta+C.
 +
\end{equation}
 +
Consequently Chebyshev's  theorem indicates that, when $\Lambda\neq0$, the left-hand side of (\ref{50}) is elementary if
 +
and only if $\frac1{n(1+w)}$ or $\frac1{n(1+w)}-\frac12$ is an integer (again we exclude the trivial case $w=-1$), or more explicitly, $w$ satisfies one of the following
 +
conditions:
 +
\begin{eqnarray}
 +
w&=&-1+\frac1{nN},\quad N=\pm1,\pm2,\dots;\label{x4}\\
 +
w&=&-1+\frac1{n\left(N+\frac12\right)},\quad N=0,\pm1,\pm2,\dots.
 +
\end{eqnarray}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="gnd_12"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 12 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_12</p>
 +
Obtain explicit solutions for the case $w=\frac1n-1$ in the previous problem.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The equation (\ref{49}) now becomes
 +
\begin{equation}
 +
a'=\pm a^2\sqrt{c_0 a^{-1}+\Lambda_0},
 +
\end{equation}
 +
which can be integrated to yield the solution
 +
\begin{equation}
 +
\frac{c_0}a+\Lambda_0=\frac{c_0^2}4(\eta+C)^2,
 +
\end{equation}
 +
where $C$ is an integrating constant.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="gnd_13"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 13 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_13</p>
 +
Obtain exact solutions for the equation (\ref{48}) with $\Lambda=0$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The Friedmann equation now becomes
 +
\begin{equation}  \label{53}
 +
a'=\pm a\sqrt{c_0 a^{-n(1+w)+2}-k},
 +
\end{equation}
 +
which in view of Chebyshev's  theorem can be
 +
integrated in terms of elementary functions when $w$ is
 +
any rational number. In fact, as before, (\ref{53}) may actually be integrated to yield its exact
 +
solution expressed in elementary functions for any $w$:
 +
\begin{equation} \label{57}
 +
\pm\left(1-\frac12 n(1+w)\right)\eta+C=\left\{\begin{array}{rll} &-\frac1v,&\quad k=0;\\
 +
&&\\
 +
&\arctan v,&\quad k=1;\\
 +
&&\\
 +
&\frac12\ln\left|\frac{v-1}{v+1}\right|,&\quad k=-1,\end{array}\right.
 +
\end{equation}
 +
where $C$ is an integration constant and
 +
\begin{equation}
 +
v=\sqrt{c_0 a^{-n(1+w)+2}-k}\quad \mbox{ or }\quad a^{-n(1+w)+2}=\frac1{c_0} (v^2+k).
 +
\end{equation}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="gnd_14"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 14 ===
 +
<p style= "color: #999;font-size: 11px">problem id: gnd_14</p>
 +
Obtain inflationary solutions using the results of the previous problem.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">To obtain inflationary solutions, we assume
 +
\begin{equation}
 +
n(1+w)>2,
 +
\end{equation}
 +
which includes the dust and radiation matter situations since $n\geq3$. We assume the initial
 +
condition $a(0)=0$. When $k=0$, (\ref{57}) gives us the solution
 +
\begin{equation}\label{xx1}
 +
a^{n(1+w)-2}(\eta)=\frac{4\pi G\rho_0}{n(n-1)}\left(n(1+w)-2\right)^2\eta^2,\quad \eta\geq0.
 +
\end{equation}
 +
When $k=1$, (\ref{57}) renders the solution
 +
\begin{equation}
 +
a^{n(1+w)-2}(\eta)=\frac{16\pi G \rho_0}{n(n-1)}\sin^2\left(\frac12(n[1+w]-2)\eta\right),\quad  \eta\geq0,
 +
\end{equation}
 +
which gives rise to a periodic Universe. When $k=-1$, (\ref{57}) yields
 +
\begin{equation}
 +
a^{n(1+w)-2}(\eta)=\frac{16\pi G \rho_0}{n(n-1)}\sinh^2\left(\frac12(n[1+w]-2)\eta\right),\quad  \eta\geq0,
 +
\end{equation}
 +
which leads to an inflationary Universe. It is interesting to notice that the closed Universe
 +
situation here ($k=1,\Lambda=0$), in conformal time, is comparable to the flat Universe with a negative cosmological
 +
constant ($k=0,\Lambda<0$), in cosmological time, and the open Universe situation here ($k=-1,\Lambda=0$),
 +
in conformal time, is comparable to the flat Universe with a positive cosmological constant ($k=0,
 +
\Lambda>0$),
 +
also in cosmological time.</p>
 +
  </div>
 +
</div></div>
  
  

Revision as of 10:59, 8 December 2014

Exactly_Integrable_n-dimensional_Universes Exactly Integrable n-dimensional Universes

Problem 1

problem id: gnd_1

Derive Friedmann equations for the spatially n-dimensional Universe.


Problem 2

problem id: gnd_2

Obtain the energy conservation law for the case of n-dimensional Universe.


Problem 3

problem id: gnd_3

Obtain relation between the energy density and scale factor in the case of a two-component n-dimensional Universe dominated by the cosmological constant and a barotropic fluid.


Problem 4

problem id: gnd_4

Obtain equation of motion for the scale factor for the previous problem.


To integrate (\ref{14}), we recall Chebyshev's theorem:

For rational numbers $p,q,r$ ($r\neq0$) and nonzero real numbers $\alpha,\beta$, the integral $\int x^p(\alpha+\beta x^r)^q\,d x$ is elementary if and only if at least one of the quantities \begin{equation}\label{cd} \frac{p+1}r,\quad q,\quad \frac{p+1}r+q, \end{equation} is an integer.

Another way to see the validity of the Chebyshev theorem is to represent the integral of concern by a hypergeometric function such that when a quantity in (\ref{cd}) is an integer the hypergeometric function is reduced into an elementary function. Consequently, when $k=0$ or $\Lambda=0$, and $w$ is rational, the Chebyshev theorem enables us to know that, for exactly what values of $n$ and $w$, the equation (\ref{14}) may be integrated.


Problem 5

problem id: gnd_4_0

Obtain analytic solutions for the equation of motion for the scale factor of the previous problem for spatially flat ($k=0$) Universe.


Problem 6

problem id: gnd_5

Use the analytic solutions obtained in the previous problem to study cosmology with $w>-1$ and $a(0)=0$.


Problem 7

problem id: gnd_6

Use results of the previous problem to calculate the deceleration $q=-a\ddot a/\dot a^2$ parameter.


Problem 8

problem id: gnd_4_1

Obtain the exact solvability conditions for the case $\Lambda=0$ in equation (\ref{14}) (see problem #gnd_4 ).


Problem 9

problem id: gnd_4_2

Obtain the explicit solutions for the case $n=3$ and $w=-5/9$ in the previous problem.


Problem 10

problem id: gnd_10

Rewrite equation of motion for the scale factor (\ref{14}) in terms of the conformal time.


Problem 11

problem id: gnd_11

Find the rational values of the equation of state parameter $w$ which provide exact integrability of the equation (\ref{48}) with $k=0$.


Problem 12

problem id: gnd_12

Obtain explicit solutions for the case $w=\frac1n-1$ in the previous problem.


Problem 13

problem id: gnd_13

Obtain exact solutions for the equation (\ref{48}) with $\Lambda=0$.


Problem 14

problem id: gnd_14

Obtain inflationary solutions using the results of the previous problem.


UNSORTED NEW Problems

The history of what happens in any chosen sample region is the same as the history of what happens everywhere. Therefore it seems very tempting to limit ourselves with the formulation of Cosmology for the single sample region. But any region is influenced by other regions near and far. If we are to pay undivided attention to a single region, ignoring all other regions, we must in some way allow for their influence. E. Harrison in his book Cosmology, Cambridge University Press, 1981 suggests a simple model to realize this idea. The model has acquired the name of "Cosmic box" and it consists in the following.

Imaginary partitions, comoving and perfectly reflecting, are used to divide the Universe into numerous separate cells. Each cell encloses a representative sample and is sufficiently large to contain galaxies and clusters of galaxies. Each cell is larger than the largest scale of irregularity in the Universe, and the contents of all cells are in identical states. A partitioned Universe behaves exactly as a Universe without partitions. We assume that the partitions have no mass and hence their insertion cannot alter the dynamical behavior of the Universe. The contents of all cells are in similar states, and in the same state as when there were no partitions. Light rays that normally come from very distant galaxies come instead from local galaxies of long ago and travel similar distances by multiple re?ections. What normally passes out of a region is reflected back and copies what normally enters a region.

Let us assume further that the comoving walls of the cosmic box move apart at a velocity given by the Hubble law. If the box is a cube with sides of length $L$, then opposite walls move apart at relative velocity $HL$.Let us assume that the size of the box $L$ is small compared to the Hubble radius $L_{H} $ , the walls have a recession velocity that is small compared to the velocity of light. Inside a relatively small cosmic box we use ordinary everyday physics and are thus able to determine easily the consequences of expansion. We can even use Newtonian mechanics to determine the expansion if we embed a spherical cosmic box in Euclidean space.


Problem 1

problem id:

As we have shown before (see Chapter 3): $p(t)\propto a(t)^{-1} $ , so all freely moving particles, including galaxies (when not bound in clusters), slowly lose their peculiar motion and ultimately become stationary in expanding space. Try to understand what happens by considering a moving particle inside an expanding cosmic box


Problem 2

problem id:

Show that at redshift $z=1$ , when the Universe is half its present size, the kinetic energy of a freely moving nonrelativistic particle is four times its present value, and the energy of a relativistic particle is twice its present value.


Problem 3

problem id:

Let the cosmic box is filled with non-relativistic gas. Find out how the gas temperature varies in the expanding cosmic box.


Problem 4

problem id:

Show that entropy of the cosmic box is conserved during its expansion.


Problem 5

problem id:

Consider a (cosmic) box of volume V, having perfectly reflecting walls and containing radiation of mass density $\rho $. The mass of the radiation in the box is $M=\rho V$ . We now weigh the box and find that its mass, because of the enclosed radiation, has increased not by M but by an amount 2M. Why?


Problem 6

problem id:

Show that the jerk parameter is \[j(t)=q+2q^{2} -\frac{\dot{q}}{H} \]


Problem 7

problem id:

We consider FLRW spatially flat Universe with the general Friedmann equations \[\begin{array}{l} {H^{2} =\frac{1}{3} \rho +f(t),} \\ {\frac{\ddot{a}}{a} =-\frac{1}{6} \left(\rho +3p\right)+g(t)} \end{array}\] Obtain the general conservation equation.


Problem 8

problem id:

Show that for extra driving terms in the form of the cosmological constant the general conservation equation (see previous problem) transforms in the standard conservation equation.


Problem 9

problem id:

Show that case $f(t)=g(t)=\Lambda /3$ corresponds to $\Lambda (t)CDM$ model.