Difference between revisions of "New problems"

From Universe in Problems
Jump to: navigation, search
Line 9: Line 9:
 
<div id="2612_1"></div>
 
<div id="2612_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  '''Problem 1'''
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: 2612_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: 2612_1</p>
 
Find dimension of the Newtonian gravitational constant $G$ and electric charge $e$ in the $N$-dimensional space.
 
Find dimension of the Newtonian gravitational constant $G$ and electric charge $e$ in the $N$-dimensional space.
Line 22: Line 22:
 
<div id="2612_2"></div>
 
<div id="2612_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 2
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: 2612_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: 2612_2</p>
 
In 1881, Johnson Stoney proposed a set of fundamental units involving $c$, $G$ and $e$. Construct Stoney's natural units of length, mass and time.
 
In 1881, Johnson Stoney proposed a set of fundamental units involving $c$, $G$ and $e$. Construct Stoney's natural units of length, mass and time.
Line 37: Line 37:
 
<div id="2612_3"></div>
 
<div id="2612_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 3
+
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: 2612_3</p>
 
<p style= "color: #999;font-size: 11px">problem id: 2612_3</p>
 
Show that the fine structure constant $\alpha=e^2/(\hbar c)$ can be used to convert between Stoney and Planck units.
 
Show that the fine structure constant $\alpha=e^2/(\hbar c)$ can be used to convert between Stoney and Planck units.
Line 52: Line 52:
 
<div id="2612_4"></div>
 
<div id="2612_4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 4
+
'''Problem 4'''
 
<p style= "color: #999;font-size: 11px">problem id: 2612_4</p>
 
<p style= "color: #999;font-size: 11px">problem id: 2612_4</p>
 
Gibbons [G W Gibbons,  The Maximum Tension Principle in General Relativity, arXiv:0210109] formulated a hypothesis, that in General Relativity there should be a maximum value to any physically attainable force (or tension) given by
 
Gibbons [G W Gibbons,  The Maximum Tension Principle in General Relativity, arXiv:0210109] formulated a hypothesis, that in General Relativity there should be a maximum value to any physically attainable force (or tension) given by
Line 76: Line 76:
 
<div id="2612_5"></div>
 
<div id="2612_5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 5
+
'''Problem 5'''
 
<p style= "color: #999;font-size: 11px">problem id: 2612_5</p>
 
<p style= "color: #999;font-size: 11px">problem id: 2612_5</p>
 
''E. Berti, A Black-Hole Primer: Particles, Waves, Critical Phenomena and Superradiant  instabilities (arXiv:1410.4481[gr-qc])''
 
''E. Berti, A Black-Hole Primer: Particles, Waves, Critical Phenomena and Superradiant  instabilities (arXiv:1410.4481[gr-qc])''
Line 105: Line 105:
 
<div id="2612_6"></div>
 
<div id="2612_6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 6
+
'''Problem 6'''
 
<p style= "color: #999;font-size: 11px">problem id: 2612_6</p>
 
<p style= "color: #999;font-size: 11px">problem id: 2612_6</p>
 
The lookback time is defined as the difference between the present day age of the Universe and its age at redshift $z$, i.e. the difference between the age of the Universe at observation $t_0$ and the age of the Universe, $t$, when the photons were emitted. Find the lookback time for the Universe filled by non-relativistic matter, radiation and a component with the state equation $p=w(z)\rho$.
 
The lookback time is defined as the difference between the present day age of the Universe and its age at redshift $z$, i.e. the difference between the age of the Universe at observation $t_0$ and the age of the Universe, $t$, when the photons were emitted. Find the lookback time for the Universe filled by non-relativistic matter, radiation and a component with the state equation $p=w(z)\rho$.
Line 127: Line 127:
 
<div id="2612_7"></div>
 
<div id="2612_7"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 7
+
'''Problem 7'''
 
<p style= "color: #999;font-size: 11px">problem id: 2612_7</p>
 
<p style= "color: #999;font-size: 11px">problem id: 2612_7</p>
 
Find the solutions corrected by LQC Friedmann equations for a matter dominated Universe.
 
Find the solutions corrected by LQC Friedmann equations for a matter dominated Universe.
Line 144: Line 144:
 
<div id="2612_8"></div>
 
<div id="2612_8"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 8
+
'''Problem 8'''
 
<p style= "color: #999;font-size: 11px">problem id: 2612_8</p>
 
<p style= "color: #999;font-size: 11px">problem id: 2612_8</p>
 
Show that in the case of the flat Friedmann metric, the third power of the scale factor $\varphi=a^3$ satisfies the equation
 
Show that in the case of the flat Friedmann metric, the third power of the scale factor $\varphi=a^3$ satisfies the equation
Line 159: Line 159:
 
<div id="2612_9"></div>
 
<div id="2612_9"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 9
+
'''Problem 9'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
It is of broad interest to understand better the nature of the early Universe especially the Big Bang. The discovery of the CMB in 1965 resolved a dichotomy then existing in theoretical cosmology between steady-state and Big Bang theories. The interpretation of the CMB as a relic of a Big Bang was compelling and the steady-state theory died. Actually at that time it was really a trichotomy being reduced to a dichotomy because a third theory is a cyclic cosmology model. Give a basic argument of the opponents to the latter model.
 
It is of broad interest to understand better the nature of the early Universe especially the Big Bang. The discovery of the CMB in 1965 resolved a dichotomy then existing in theoretical cosmology between steady-state and Big Bang theories. The interpretation of the CMB as a relic of a Big Bang was compelling and the steady-state theory died. Actually at that time it was really a trichotomy being reduced to a dichotomy because a third theory is a cyclic cosmology model. Give a basic argument of the opponents to the latter model.
Line 172: Line 172:
 
<div id="2612_10"></div>
 
<div id="2612_10"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 10
+
'''Problem 10'''
 
<p style= "color: #999;font-size: 11px">problem id: 2612_10</p>
 
<p style= "color: #999;font-size: 11px">problem id: 2612_10</p>
 
Express the present epoch value of the Ricci scalar $R$ and its first derivative in terms of $H_0$ and its derivatives (flat case).
 
Express the present epoch value of the Ricci scalar $R$ and its first derivative in terms of $H_0$ and its derivatives (flat case).
Line 208: Line 208:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 221: Line 221:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 234: Line 234:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 247: Line 247:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 260: Line 260:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 273: Line 273:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 286: Line 286:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 299: Line 299:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 312: Line 312:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 325: Line 325:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 338: Line 338:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 351: Line 351:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 364: Line 364:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 377: Line 377:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 390: Line 390:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 403: Line 403:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 416: Line 416:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 429: Line 429:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 442: Line 442:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 458: Line 458:
 
<div id="gnd_1"></div>
 
<div id="gnd_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 1
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_1</p>
 
Derive Friedmann equations for the spatially n-dimensional Universe.
 
Derive Friedmann equations for the spatially n-dimensional Universe.
Line 512: Line 512:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
  Problem 2
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_2</p>
 
Obtain the energy conservation law for the case of n-dimensional Universe.
 
Obtain the energy conservation law for the case of n-dimensional Universe.
Line 531: Line 531:
 
<div id="gnd_3"></div>
 
<div id="gnd_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 3
+
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_3</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_3</p>
 
Obtain relation between the energy density and scale factor in the case of a two-component n-dimensional Universe dominated by the cosmological constant and a barotropic fluid.
 
Obtain relation between the energy density and scale factor in the case of a two-component n-dimensional Universe dominated by the cosmological constant and a barotropic fluid.
Line 566: Line 566:
 
<div id="gnd_4"></div>
 
<div id="gnd_4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 4
+
'''Problem 4'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_4</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_4</p>
 
Obtain equation of motion for the scale factor for the previous problem.
 
Obtain equation of motion for the scale factor for the previous problem.
Line 593: Line 593:
 
<div id="gnd_4_0"></div>
 
<div id="gnd_4_0"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 5
+
'''Problem 5'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_4_0</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_4_0</p>
 
Obtain analytic solutions for the equation of motion for the scale factor of the previous problem for spatially flat ($k=0$) Universe.
 
Obtain analytic solutions for the equation of motion for the scale factor of the previous problem for spatially flat ($k=0$) Universe.
Line 651: Line 651:
 
<div id="gnd_5"></div>
 
<div id="gnd_5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 6
+
'''Problem 6'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_5</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_5</p>
 
Use the analytic solutions obtained in the previous problem to study cosmology with $w>-1$ and $a(0)=0$.
 
Use the analytic solutions obtained in the previous problem to study cosmology with $w>-1$ and $a(0)=0$.
Line 695: Line 695:
 
<div id="gnd_6"></div>
 
<div id="gnd_6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 7
+
'''Problem 7'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_6</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_6</p>
 
Use results of the previous problem to calculate the deceleration $q=-a\ddot a/\dot a^2$ parameter.
 
Use results of the previous problem to calculate the deceleration $q=-a\ddot a/\dot a^2$ parameter.
Line 718: Line 718:
 
<div id="gnd_4_1"></div>
 
<div id="gnd_4_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 8
+
'''Problem 8'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_4_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_4_1</p>
 
Obtain the exact solvability conditions for the case $\Lambda=0$ in equation (\ref{14}) (see problem [[#gnd_4]] ).
 
Obtain the exact solvability conditions for the case $\Lambda=0$ in equation (\ref{14}) (see problem [[#gnd_4]] ).
Line 759: Line 759:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
  Problem 9
+
'''Problem 9'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_4_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_4_2</p>
 
Obtain the explicit solutions for the case $n=3$ and $w=-5/9$ in the previous problem.
 
Obtain the explicit solutions for the case $n=3$ and $w=-5/9$ in the previous problem.
Line 818: Line 818:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
  Problem 10
+
'''Problem 10'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_10</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_10</p>
 
Rewrite equation of motion for the scale factor (\ref{14}) in terms of the conformal time.
 
Rewrite equation of motion for the scale factor (\ref{14}) in terms of the conformal time.
Line 833: Line 833:
 
<div id="gnd_11"></div>
 
<div id="gnd_11"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 11
+
'''Problem 11'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_11</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_11</p>
 
Find the rational values of the equation of state parameter $w$ which provide exact integrability of the equation (\ref{48}) with $k=0$.
 
Find the rational values of the equation of state parameter $w$ which provide exact integrability of the equation (\ref{48}) with $k=0$.
Line 860: Line 860:
 
<div id="gnd_12"></div>
 
<div id="gnd_12"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 12
+
'''Problem 12'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_12</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_12</p>
 
Obtain explicit solutions for the case $w=\frac1n-1$ in the previous problem.
 
Obtain explicit solutions for the case $w=\frac1n-1$ in the previous problem.
Line 882: Line 882:
 
<div id="gnd_13"></div>
 
<div id="gnd_13"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 13
+
'''Problem 13'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_13</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_13</p>
 
Obtain exact solutions for the equation (\ref{48}) with $\Lambda=0$.
 
Obtain exact solutions for the equation (\ref{48}) with $\Lambda=0$.
Line 914: Line 914:
 
<div id="gnd_14"></div>
 
<div id="gnd_14"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 14
+
'''Problem 14'''
 
<p style= "color: #999;font-size: 11px">problem id: gnd_14</p>
 
<p style= "color: #999;font-size: 11px">problem id: gnd_14</p>
 
Obtain inflationary solutions using the results of the previous problem.
 
Obtain inflationary solutions using the results of the previous problem.
Line 958: Line 958:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 1
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
As we have shown before (see Chapter 3): $p(t)\propto a(t)^{-1} $ , so all freely moving particles, including galaxies (when not bound in clusters), slowly lose their peculiar motion and ultimately become stationary in expanding space. Try to understand what happens by considering a moving particle inside an expanding cosmic box
 
As we have shown before (see Chapter 3): $p(t)\propto a(t)^{-1} $ , so all freely moving particles, including galaxies (when not bound in clusters), slowly lose their peculiar motion and ultimately become stationary in expanding space. Try to understand what happens by considering a moving particle inside an expanding cosmic box
Line 975: Line 975:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 2
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that at redshift $z=1$ , when the Universe is half its present size, the kinetic energy of a freely moving nonrelativistic particle is four times its present value, and the energy of a relativistic particle is twice its present value.
 
Show that at redshift $z=1$ , when the Universe is half its present size, the kinetic energy of a freely moving nonrelativistic particle is four times its present value, and the energy of a relativistic particle is twice its present value.
Line 994: Line 994:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 3
+
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Let the cosmic box is filled with non-relativistic gas. Find out how the gas temperature varies in the expanding cosmic box.
 
Let the cosmic box is filled with non-relativistic gas. Find out how the gas temperature varies in the expanding cosmic box.
Line 1,008: Line 1,008:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 4
+
'''Problem 4'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that entropy of the cosmic box is conserved during its expansion.
 
Show that entropy of the cosmic box is conserved during its expansion.
Line 1,021: Line 1,021:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 5
+
'''Problem 5'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Consider a (cosmic) box of volume V, having perfectly reflecting walls and containing radiation of mass density $\rho $. The mass of the radiation in the box is $M=\rho V$ . We now weigh the box and find that its mass, because of the enclosed radiation, has increased not by M but by an amount 2M. Why?
 
Consider a (cosmic) box of volume V, having perfectly reflecting walls and containing radiation of mass density $\rho $. The mass of the radiation in the box is $M=\rho V$ . We now weigh the box and find that its mass, because of the enclosed radiation, has increased not by M but by an amount 2M. Why?
Line 1,034: Line 1,034:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 6
+
'''Problem 6'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that the jerk parameter is
 
Show that the jerk parameter is
Line 1,048: Line 1,048:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 7
+
'''Problem 7'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
We consider FLRW spatially flat Universe with the general Friedmann equations
 
We consider FLRW spatially flat Universe with the general Friedmann equations
Line 1,066: Line 1,066:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 8
+
'''Problem 8'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that for extra driving terms in the form of the cosmological constant the general conservation equation (see previous problem) transforms in the standard conservation equation.
 
Show that for extra driving terms in the form of the cosmological constant the general conservation equation (see previous problem) transforms in the standard conservation equation.
Line 1,080: Line 1,080:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 9
+
'''Problem 9'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that case $f(t)=g(t)=\Lambda /3$ corresponds to $\Lambda (t)CDM$ model.
 
Show that case $f(t)=g(t)=\Lambda /3$ corresponds to $\Lambda (t)CDM$ model.
Line 1,104: Line 1,104:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 10
+
'''Problem 10'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that the de Sitter spacetime has a constant four-dimensional curvature.
 
Show that the de Sitter spacetime has a constant four-dimensional curvature.
Line 1,121: Line 1,121:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 11
+
'''Problem 11'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
In the de Sitter spacetime transform the FRLW metric into the explicitly conformally flat metric.
 
In the de Sitter spacetime transform the FRLW metric into the explicitly conformally flat metric.
Line 1,138: Line 1,138:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 12
+
'''Problem 12'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
(Problems 12-13, A.Vilenkin, Many worlds in one, Hill and Wang, New York, 2006)}
 
(Problems 12-13, A.Vilenkin, Many worlds in one, Hill and Wang, New York, 2006)}
Line 1,153: Line 1,153:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 13
+
'''Problem 13'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
P. Steinhardt and N. Turok proposed a model of cyclic Universe where the expansion rate in each cycle is greater than the contraction one so that volume of the Universe grows from one cycle to the other. Show that this model does not contradict the second law of thermodynamics and is free of the heat death problem.
 
P. Steinhardt and N. Turok proposed a model of cyclic Universe where the expansion rate in each cycle is greater than the contraction one so that volume of the Universe grows from one cycle to the other. Show that this model does not contradict the second law of thermodynamics and is free of the heat death problem.
Line 1,166: Line 1,166:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 14
+
'''Problem 14'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
If a closed Universe appeared as a quantum fluctuation, so what is the upper limit of its existence? (see A.Vilenkin, Many worlds in one, Hill and Wang, New York, 2006)
 
If a closed Universe appeared as a quantum fluctuation, so what is the upper limit of its existence? (see A.Vilenkin, Many worlds in one, Hill and Wang, New York, 2006)
Line 1,189: Line 1,189:
 
<div id="Siv_1"></div>
 
<div id="Siv_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 1
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: Siv_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: Siv_1</p>
 
(after C.Sivaram, Dark Energy may link the numbers of Rees, arXiv: 0710.4993)
 
(after C.Sivaram, Dark Energy may link the numbers of Rees, arXiv: 0710.4993)
Line 1,207: Line 1,207:
 
<div id="Siv_2"></div>
 
<div id="Siv_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 2
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: Siv_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: Siv_2</p>
 
(after C.Sivaram, Scaling Relations for self-Similar Structures and the Cosmological Constant, arXiv: 0801.1218)
 
(after C.Sivaram, Scaling Relations for self-Similar Structures and the Cosmological Constant, arXiv: 0801.1218)
Line 1,271: Line 1,271:
 
<div id="SSC_0"></div>
 
<div id="SSC_0"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 1
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_0</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_0</p>
 
Show that the Hubble parameter cannot increase with time in the single scalar cosmology.
 
Show that the Hubble parameter cannot increase with time in the single scalar cosmology.
Line 1,305: Line 1,305:
 
<div id="SSC_00"></div>
 
<div id="SSC_00"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 2
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_00</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_00</p>
 
Show that if the Universe is filled by a substance which satisfies the null energy condition then the Hubble parameter is a semi-monotonically decreasing function of time.
 
Show that if the Universe is filled by a substance which satisfies the null energy condition then the Hubble parameter is a semi-monotonically decreasing function of time.
Line 1,319: Line 1,319:
 
<div id="SSC_0_1"></div>
 
<div id="SSC_0_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 3
+
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_0_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_0_1</p>
 
For  single-field scalar models express the scalar field potential in terms of the Hubble parameter and its derivative with respect to the scalar field.
 
For  single-field scalar models express the scalar field potential in terms of the Hubble parameter and its derivative with respect to the scalar field.
Line 1,337: Line 1,337:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
  Problem 4
+
'''Problem 4'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_1</p>
 
Obtain first-order differential equation for the Hubble parameter $H$ as function of $\varphi$ and find its stationary points.
 
Obtain first-order differential equation for the Hubble parameter $H$ as function of $\varphi$ and find its stationary points.
Line 1,363: Line 1,363:
 
<div id="SSC_2"></div>
 
<div id="SSC_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 5
+
'''Problem 5'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_2</p>
 
Consider eternally oscillating scalar field of the form $\varphi(t) = \varphi_0 \cos \omega t$ and analyze stationary points in such a model.
 
Consider eternally oscillating scalar field of the form $\varphi(t) = \varphi_0 \cos \omega t$ and analyze stationary points in such a model.
Line 1,392: Line 1,392:
 
<div id="SSC_3"></div>
 
<div id="SSC_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 6
+
'''Problem 6'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_3</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_3</p>
 
Obtain explicit solution for the Hubble parameter in the model considered in the previous problem.
 
Obtain explicit solution for the Hubble parameter in the model considered in the previous problem.
Line 1,408: Line 1,408:
 
<div id="SSC_4"></div>
 
<div id="SSC_4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 7
+
'''Problem 7'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_4</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_4</p>
 
Obtain explicit time dependence for the scale factor in the model of problem [[#SSC_2]].
 
Obtain explicit time dependence for the scale factor in the model of problem [[#SSC_2]].
Line 1,426: Line 1,426:
 
<div id="SSC_5"></div>
 
<div id="SSC_5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 8
+
'''Problem 8'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_5</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_5</p>
 
Reconstruct the scalar field potential $V(\varphi)$ needed to generate the model of problem [[#SSC_2]].
 
Reconstruct the scalar field potential $V(\varphi)$ needed to generate the model of problem [[#SSC_2]].
Line 1,447: Line 1,447:
 
<div id="SSC_6_00"></div>
 
<div id="SSC_6_00"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 9
+
'''Problem 9'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_6_00</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_6_00</p>
 
Describe possible final states for the Universe governed by
 
Describe possible final states for the Universe governed by
Line 1,461: Line 1,461:
 
<div id="SSC_6_0"></div>
 
<div id="SSC_6_0"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 10
+
'''Problem 10'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_6_0</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_6_0</p>
 
Formulate conditions for existence of end points of evolution in terms of the potential $V(\varphi)$.
 
Formulate conditions for existence of end points of evolution in terms of the potential $V(\varphi)$.
Line 1,490: Line 1,490:
 
<div id="SSC_6_1"></div>
 
<div id="SSC_6_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 11
+
'''Problem 11'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_6_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_6_1</p>
 
Consider a single scalar cosmology described by the quadratic potential
 
Consider a single scalar cosmology described by the quadratic potential
Line 1,527: Line 1,527:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
  Problem 12
+
'''Problem 12'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_7</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_7</p>
 
Obtain actual solutions for the model of previous problem using the power series expansion
 
Obtain actual solutions for the model of previous problem using the power series expansion
Line 1,554: Line 1,554:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
  Problem 13
+
'''Problem 13'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_8</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_8</p>
 
Estimate main contribution to total expansion factor of the Universe.
 
Estimate main contribution to total expansion factor of the Universe.
Line 1,582: Line 1,582:
 
<div id="SSC_9_0"></div>
 
<div id="SSC_9_0"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 14
+
'''Problem 14'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_9_0</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_9_0</p>
 
Explain difference between end points and turning points of the scalar field evolution.
 
Explain difference between end points and turning points of the scalar field evolution.
Line 1,599: Line 1,599:
 
<div id="SSC_9"></div>
 
<div id="SSC_9"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 15
+
'''Problem 15'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_9</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_9</p>
 
Show that the exponentially decaying scalar field
 
Show that the exponentially decaying scalar field
Line 1,635: Line 1,635:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
  Problem 16
+
'''Problem 16'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_10</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_10</p>
 
Analyze all possible final states in the model of previous problem.
 
Analyze all possible final states in the model of previous problem.
Line 1,663: Line 1,663:
 
<div id="SSC_11"></div>
 
<div id="SSC_11"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 17
+
'''Problem 17'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_11</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_11</p>
 
Express initial energy density of the model of problem [[#SSC_9]] in terms of the $e$-folding number $N$.
 
Express initial energy density of the model of problem [[#SSC_9]] in terms of the $e$-folding number $N$.
Line 1,694: Line 1,694:
 
<div id="SSC_12"></div>
 
<div id="SSC_12"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 18
+
'''Problem 18'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_12</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_12</p>
 
Estimate mass of the particles corresponding to the exponential scalar field considered in problem [[#SSC_9]].
 
Estimate mass of the particles corresponding to the exponential scalar field considered in problem [[#SSC_9]].
Line 1,739: Line 1,739:
 
<div id="SSC_13"></div>
 
<div id="SSC_13"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 19
+
'''Problem 19'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_13</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_13</p>
 
Calculate the deceleration parameter for flat Universe filled with the scalar field in form of quintessence.
 
Calculate the deceleration parameter for flat Universe filled with the scalar field in form of quintessence.
Line 1,759: Line 1,759:
 
<div id="SSC_14_"></div>
 
<div id="SSC_14_"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 20
+
'''Problem 20'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_14_</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_14_</p>
 
When considering dynamics of scalar field $\varphi$ in flat Universe, let us define a function $f(\varphi)$ so that $\dot\varphi=\sqrt{f(\varphi)}$. Obtain the equation describing evolution of the function $f(\varphi)$. (T. Harko, F. Lobo  and M. K. Mak, Arbitrary scalar field and quintessence cosmological models, arXiv: 1310.7167)  
 
When considering dynamics of scalar field $\varphi$ in flat Universe, let us define a function $f(\varphi)$ so that $\dot\varphi=\sqrt{f(\varphi)}$. Obtain the equation describing evolution of the function $f(\varphi)$. (T. Harko, F. Lobo  and M. K. Mak, Arbitrary scalar field and quintessence cosmological models, arXiv: 1310.7167)  
Line 1,781: Line 1,781:
 
<div id="PWL_1"></div>
 
<div id="PWL_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 1
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: PWL_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: PWL_1</p>
 
Show that for power law $a(t)\propto t^n$ expansion  slow-roll inflation occurs when $n\gg1$.
 
Show that for power law $a(t)\propto t^n$ expansion  slow-roll inflation occurs when $n\gg1$.
Line 1,794: Line 1,794:
 
<div id="PWL_2"></div>
 
<div id="PWL_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 2
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: PWL_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: PWL_2</p>
 
Show that in the power-law cosmology the scale factor evolution $a\propto\eta^q$ in conformal time transforms into $a\propto t^p$ in physical (cosmic) time with \[p=\frac{q}{1+q}.\]
 
Show that in the power-law cosmology the scale factor evolution $a\propto\eta^q$ in conformal time transforms into $a\propto t^p$ in physical (cosmic) time with \[p=\frac{q}{1+q}.\]
Line 1,807: Line 1,807:
 
<div id="PWL_3"></div>
 
<div id="PWL_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 3
+
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: PWL_3</p>
 
<p style= "color: #999;font-size: 11px">problem id: PWL_3</p>
 
Show that if $a\propto\eta^q$ then the state parameter $w$ is related to the index $q$ by the following \[w=\frac{2-q}{3q}=const.\]
 
Show that if $a\propto\eta^q$ then the state parameter $w$ is related to the index $q$ by the following \[w=\frac{2-q}{3q}=const.\]
Line 1,833: Line 1,833:
 
<div id="SSC_18"></div>
 
<div id="SSC_18"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 1
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_18</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_18</p>
 
Calculate Hubble parameter, deceleration parameter and jerk parameter for hybrid expansion law.
 
Calculate Hubble parameter, deceleration parameter and jerk parameter for hybrid expansion law.
Line 1,848: Line 1,848:
 
<div id="SSC_18_2"></div>
 
<div id="SSC_18_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 2
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_18_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_18_2</p>
 
For hybrid expansion law find $a, H, q$ and $j$ in the cases of very early Universe $(t\to0)$ and for the late times $(t\to\infty)$.
 
For hybrid expansion law find $a, H, q$ and $j$ in the cases of very early Universe $(t\to0)$ and for the late times $(t\to\infty)$.
Line 1,865: Line 1,865:
 
<div id="SSC_18_3"></div>
 
<div id="SSC_18_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 3
+
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_18_3</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_18_3</p>
 
In general relativity, one can always introduce an effective source that gives rise to a given expansion law. Using the ansatz of hybrid expansion law obtain the EoS parameter of the effective fluid.
 
In general relativity, one can always introduce an effective source that gives rise to a given expansion law. Using the ansatz of hybrid expansion law obtain the EoS parameter of the effective fluid.
Line 1,882: Line 1,882:
 
<div id="SSC_19"></div>
 
<div id="SSC_19"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 4
+
'''Problem 4'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19</p>
 
We can always construct a scalar field Lagrangian which can mimic a given cosmic history. Consequently,  we can consider the quintessence realization of the hybrid expansion law. Find time dependence for the the quintessence field $\varphi(t)$ and potential $V(t)$, realizing the hybrid expansion law. Obtain the dependence $V(\varphi)$.
 
We can always construct a scalar field Lagrangian which can mimic a given cosmic history. Consequently,  we can consider the quintessence realization of the hybrid expansion law. Find time dependence for the the quintessence field $\varphi(t)$ and potential $V(t)$, realizing the hybrid expansion law. Obtain the dependence $V(\varphi)$.
Line 1,903: Line 1,903:
 
<div id="SSC_19_1"></div>
 
<div id="SSC_19_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 5
+
'''Problem 5'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19_1</p>
 
Quintessence paradigm relies on the potential energy of scalar fields to drive the late time acceleration of the Universe. On the other hand, it is also possible to relate the late time acceleration of the Universe with the kinetic term of the scalar field by relaxing its canonical kinetic term. In particular this idea can be realized with the help of so-called tachyon fields, for which
 
Quintessence paradigm relies on the potential energy of scalar fields to drive the late time acceleration of the Universe. On the other hand, it is also possible to relate the late time acceleration of the Universe with the kinetic term of the scalar field by relaxing its canonical kinetic term. In particular this idea can be realized with the help of so-called tachyon fields, for which
Line 1,932: Line 1,932:
 
<div id="SSC_19_2"></div>
 
<div id="SSC_19_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 6
+
'''Problem 6'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19_2</p>
 
Calculate Hubble parameter and deceleration parameter for the case of phantom field in which the energy density and pressure are respectively given by
 
Calculate Hubble parameter and deceleration parameter for the case of phantom field in which the energy density and pressure are respectively given by
Line 1,958: Line 1,958:
 
<div id="SSC_19_0"></div>
 
<div id="SSC_19_0"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 7
+
'''Problem 7'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19_0</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19_0</p>
 
Solve the problem [[#SSC_19]] for the case of phantom field.
 
Solve the problem [[#SSC_19]] for the case of phantom field.
Line 1,978: Line 1,978:
 
<div id="SSC_19_12"></div>
 
<div id="SSC_19_12"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 8
+
'''Problem 8'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19_12</p>
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19_12</p>
 
Find EoS parameter for the case of phantom field.
 
Find EoS parameter for the case of phantom field.
Line 2,003: Line 2,003:
 
<div id="bianchi_01"></div>
 
<div id="bianchi_01"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 1
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_01</p>
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_01</p>
 
Find the field equations of the BI Universe.
 
Find the field equations of the BI Universe.
Line 2,027: Line 2,027:
 
<div id="bi_2"></div>
 
<div id="bi_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 2
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: bi_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: bi_2</p>
 
Reformulate the field equations of the BI Universe in terms of the directional Hubble parameters.
 
Reformulate the field equations of the BI Universe in terms of the directional Hubble parameters.
Line 2,053: Line 2,053:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 3
+
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
The BI Universe has a flat metric, which implies that its total density is equal to the critical density. Find the  critical density.
 
The BI Universe has a flat metric, which implies that its total density is equal to the critical density. Find the  critical density.
Line 2,066: Line 2,066:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 4
+
'''Problem 4'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Obtain an analogue of the conservation equation $\dot\rho+3H(\rho+p)=0$ for the case of the BI Universe.
 
Obtain an analogue of the conservation equation $\dot\rho+3H(\rho+p)=0$ for the case of the BI Universe.
Line 2,081: Line 2,081:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 5
+
'''Problem 5'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Obtain the evolution equation for the mean of the three directional Hubble parameters $\bar H$.
 
Obtain the evolution equation for the mean of the three directional Hubble parameters $\bar H$.
Line 2,106: Line 2,106:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 6
+
'''Problem 6'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that the system of equations for the BI Universe
 
Show that the system of equations for the BI Universe
Line 2,140: Line 2,140:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 7
+
'''Problem 7'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that the mean of the three directional Hubble parameters $\bar H$ is related to the elementary volume of the BI Universe $V\equiv a_1a_2a_3$ as \[\bar H=\frac13\frac{\dot V}{V}.\]
 
Show that the mean of the three directional Hubble parameters $\bar H$ is related to the elementary volume of the BI Universe $V\equiv a_1a_2a_3$ as \[\bar H=\frac13\frac{\dot V}{V}.\]
Line 2,153: Line 2,153:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 8
+
'''Problem 8'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Obtain the volume evolution equation of the BI model.
 
Obtain the volume evolution equation of the BI model.
Line 2,171: Line 2,171:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 9
+
'''Problem 9'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Find the generic solution of the directional Hubble parameters.
 
Find the generic solution of the directional Hubble parameters.
Line 2,200: Line 2,200:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 10
+
'''Problem 10'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Find the energy density of the radiation dominated BI Universe in terms of volume element $V_r$.
 
Find the energy density of the radiation dominated BI Universe in terms of volume element $V_r$.
Line 2,219: Line 2,219:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 11
+
'''Problem 11'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Find the mean Hubble parameter of the radiation dominated case.
 
Find the mean Hubble parameter of the radiation dominated case.
Line 2,241: Line 2,241:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 12
+
'''Problem 12'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Find the directional expansion rates of the radiation dominated model.
 
Find the directional expansion rates of the radiation dominated model.
Line 2,259: Line 2,259:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 13
+
'''Problem 13'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Find time dependence for the scale factors $a_i$ in the radiation dominated BI Universe.
 
Find time dependence for the scale factors $a_i$ in the radiation dominated BI Universe.
Line 2,276: Line 2,276:
 
<div id="bianchi_02"></div>
 
<div id="bianchi_02"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 14
+
'''Problem 14'''
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_02</p>
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_02</p>
 
Find the partial energy densities for the two components of the BI Universe dominated by radiation and matter in terms of volume element $V_{rm}$.
 
Find the partial energy densities for the two components of the BI Universe dominated by radiation and matter in terms of volume element $V_{rm}$.
Line 2,306: Line 2,306:
 
<div id="bianchi_03"></div>
 
<div id="bianchi_03"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 15
+
'''Problem 15'''
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_03</p>
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_03</p>
 
Obtain time evolution equation for the total volume $V_{rm}$ in the BI Universe dominated by radiation and matter.
 
Obtain time evolution equation for the total volume $V_{rm}$ in the BI Universe dominated by radiation and matter.
Line 2,328: Line 2,328:
 
<div id="bianchi_04"></div>
 
<div id="bianchi_04"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 16
+
'''Problem 16'''
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_04</p>
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_04</p>
 
Using result of the previous problem, obtain a relation between the mean Hubble parameter and the volume element.
 
Using result of the previous problem, obtain a relation between the mean Hubble parameter and the volume element.
Line 2,351: Line 2,351:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
  Problem 1
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: gmudedm_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: gmudedm_1</p>
 
The equation of state of a barotropic cosmic fluid can in general be written as an
 
The equation of state of a barotropic cosmic fluid can in general be written as an
Line 2,370: Line 2,370:
 
<div id="gmudedm_2"></div>
 
<div id="gmudedm_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 2
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: gmudedm_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: gmudedm_2</p>
 
For the barotropic fluid with a constant speed of sound $c_s^2=const$ find evolution of the parameter of EOS, density and pressure with the redshift.
 
For the barotropic fluid with a constant speed of sound $c_s^2=const$ find evolution of the parameter of EOS, density and pressure with the redshift.
Line 2,397: Line 2,397:
 
<div id="TF_1"></div>
 
<div id="TF_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 1
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: TF_1</p>
 
<p style= "color: #999;font-size: 11px">problem id: TF_1</p>
 
Construct planck units in a space of arbitrary dimension.
 
Construct planck units in a space of arbitrary dimension.
Line 2,418: Line 2,418:
 
<div id="TF_2"></div>
 
<div id="TF_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 2
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: TF_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: TF_2</p>
 
Show that for power law $a(t)\propto t^n$ expansion  slow roll inflation occurs when $n\gg1$.
 
Show that for power law $a(t)\propto t^n$ expansion  slow roll inflation occurs when $n\gg1$.
Line 2,431: Line 2,431:
 
<div id="TF_3"></div>
 
<div id="TF_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 3
+
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: TF_3</p>
 
<p style= "color: #999;font-size: 11px">problem id: TF_3</p>
 
Find the general condition to have accelerated expansion in terms of the energy densities of the darks components and their EoS parameters
 
Find the general condition to have accelerated expansion in terms of the energy densities of the darks components and their EoS parameters
Line 2,449: Line 2,449:
 
<div id="dec_5"></div>
 
<div id="dec_5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 4
+
'''Problem 4'''
 
<p style= "color: #999;font-size: 11px">problem id: dec_5</p>
 
<p style= "color: #999;font-size: 11px">problem id: dec_5</p>
 
Complementing the assumption of isotropy with the additional assumption of homogeneity predicts the space-time metric to become of the Robertson-Walker type, predicts the redshift of light $z$, and predicts the Hubble expansion of the Universe. Then the cosmic luminosity distance-redshift relation for comoving observers and sources becomes
 
Complementing the assumption of isotropy with the additional assumption of homogeneity predicts the space-time metric to become of the Robertson-Walker type, predicts the redshift of light $z$, and predicts the Hubble expansion of the Universe. Then the cosmic luminosity distance-redshift relation for comoving observers and sources becomes
Line 2,465: Line 2,465:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
  Problem 5
+
'''Problem 5'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that in the Universe filled by radiation and matter the sound speed equals to
 
Show that in the Universe filled by radiation and matter the sound speed equals to
Line 2,479: Line 2,479:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 6
+
'''Problem 6'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that result of the previous problem can be presented in the following form
 
Show that result of the previous problem can be presented in the following form
Line 2,495: Line 2,495:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 7
+
'''Problem 7'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that in the flat Universe filled by non-relativistic matter and radiation the effective radiation parameter $w_{tot}=p_{tot}/\rho_{tot}$ equals
 
Show that in the flat Universe filled by non-relativistic matter and radiation the effective radiation parameter $w_{tot}=p_{tot}/\rho_{tot}$ equals
Line 2,510: Line 2,510:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 8
+
'''Problem 8'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that in spatially flat one-component Universe the following hold
 
Show that in spatially flat one-component Universe the following hold
Line 2,526: Line 2,526:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 9
+
'''Problem 9'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Express statefinder parameters in terms Hubble parameter and its derivatives with respect to cosmic times.
 
Express statefinder parameters in terms Hubble parameter and its derivatives with respect to cosmic times.
Line 2,539: Line 2,539:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 10
+
'''Problem 10'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Find temperature of radiation and Hubble parameter in the epoch when matter density was equal to that of radiation (Note that it was well before the last scattering epoch).
 
Find temperature of radiation and Hubble parameter in the epoch when matter density was equal to that of radiation (Note that it was well before the last scattering epoch).
Line 2,557: Line 2,557:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 11
+
'''Problem 11'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Estimate the mass-energy density $\rho$ and pressure $p$ at the center of the Sun and show that $\rho\gg p$.
 
Estimate the mass-energy density $\rho$ and pressure $p$ at the center of the Sun and show that $\rho\gg p$.
Line 2,572: Line 2,572:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 12
+
'''Problem 12'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
For a perfect fluid show that ${T^{\alpha\beta}}_{;\alpha}=0$ implies
 
For a perfect fluid show that ${T^{\alpha\beta}}_{;\alpha}=0$ implies
Line 2,596: Line 2,596:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 13
+
'''Problem 13'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that in flat Universe filled by non-relativistic matter and a substance with the state equation $p_X=w_X\rho_X$ the following holds
 
Show that in flat Universe filled by non-relativistic matter and a substance with the state equation $p_X=w_X\rho_X$ the following holds
Line 2,622: Line 2,622:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 14
+
'''Problem 14'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
(after Ming-Jian Zhang, Cong Ma, Zhi-Song Zhang, Zhong-Xu Zhai, Tong-Jie Zhang, Cosmological constraints on holographic dark energy models under the energy conditions)
 
(after Ming-Jian Zhang, Cong Ma, Zhi-Song Zhang, Zhong-Xu Zhai, Tong-Jie Zhang, Cosmological constraints on holographic dark energy models under the energy conditions)
Line 2,667: Line 2,667:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 15
+
'''Problem 15'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
According to so-called Jeans criterion exponential growth of the perturbation, and hence instability, will occur for wavelengths that satisfy:
 
According to so-called Jeans criterion exponential growth of the perturbation, and hence instability, will occur for wavelengths that satisfy:
Line 2,688: Line 2,688:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
  Problem 16
+
'''Problem 16'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
According to the Jeans criterion, initial collapse occurs whenever gravity overcomes pressure. Put differently, the important scales in star formation are those on which gravity operates against electromagnetic forces, and thus the natural dimensionless constant that quantifies star formation processes is given by:
 
According to the Jeans criterion, initial collapse occurs whenever gravity overcomes pressure. Put differently, the important scales in star formation are those on which gravity operates against electromagnetic forces, and thus the natural dimensionless constant that quantifies star formation processes is given by:
Line 2,720: Line 2,720:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 17
+
'''Problem 17'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Using the "generating function" $G(\varphi)$,
 
Using the "generating function" $G(\varphi)$,
Line 2,744: Line 2,744:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 18
+
'''Problem 18'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
(Hyeong-Chan Kim, Inflation as an attractor in scalar cosmology, arXiv:12110604) Express the EoS parameter of the scalar field in terms of the generating function and find the condition under which the scalar field behaves as the cosmological constant.
 
(Hyeong-Chan Kim, Inflation as an attractor in scalar cosmology, arXiv:12110604) Express the EoS parameter of the scalar field in terms of the generating function and find the condition under which the scalar field behaves as the cosmological constant.
Line 2,768: Line 2,768:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 1
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Compare estimates of the age of Universe according to the "PLANCK" data and that of WMAP.
 
Compare estimates of the age of Universe according to the "PLANCK" data and that of WMAP.
Line 2,793: Line 2,793:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 2
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Estimate the age of Universe corresponding to termination of the radiation dominated epoch.
 
Estimate the age of Universe corresponding to termination of the radiation dominated epoch.
Line 2,810: Line 2,810:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 3
+
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Estimate the age of Universe corresponding to termination of the matter dominated epoch.
 
Estimate the age of Universe corresponding to termination of the matter dominated epoch.
Line 2,859: Line 2,859:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 1
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
For $H(t)=\alpha/t$ find $V(\varphi)$ and $\Delta\varphi(t)$.
 
For $H(t)=\alpha/t$ find $V(\varphi)$ and $\Delta\varphi(t)$.
Line 2,873: Line 2,873:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 2
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Reconstruct $V(\varphi)$ and find $\varphi(t)$ and $a(t)$ for $V_a=\lambda\varphi^2$.
 
Reconstruct $V(\varphi)$ and find $\varphi(t)$ and $a(t)$ for $V_a=\lambda\varphi^2$.
Line 2,897: Line 2,897:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 3
+
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Reconstruct $V(\varphi)$ and find $\varphi(t)$ and $a(t)$ for $V_a=\lambda\varphi^4$.
 
Reconstruct $V(\varphi)$ and find $\varphi(t)$ and $a(t)$ for $V_a=\lambda\varphi^4$.
Line 2,915: Line 2,915:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 4
+
'''Problem 4'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Reconstruct $V(\varphi)$ and find $\varphi(t)$ and $a(t)$ for $V_a=\lambda\varphi^n$, $n>2$.
 
Reconstruct $V(\varphi)$ and find $\varphi(t)$ and $a(t)$ for $V_a=\lambda\varphi^n$, $n>2$.
Line 2,943: Line 2,943:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 1
+
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Using $d_l (z)=a_0 (1+z)f(\chi)$, where
 
Using $d_l (z)=a_0 (1+z)f(\chi)$, where
Line 2,964: Line 2,964:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
  Problem 2
+
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Many supernovae give data in the $z>1$ redshift range. Why is this a problem for the above formula for the $z$-redshift? (Problems 2) - 10) are all from the Visser convergence article)
 
Many supernovae give data in the $z>1$ redshift range. Why is this a problem for the above formula for the $z$-redshift? (Problems 2) - 10) are all from the Visser convergence article)
Line 2,979: Line 2,979:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 3
+
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Give physical reasons for the above divergence at $z=-1$.
 
Give physical reasons for the above divergence at $z=-1$.
Line 2,992: Line 2,992:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 4
+
'''Problem 4'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Sometimes a "pivot" is used:
 
Sometimes a "pivot" is used:
Line 3,013: Line 3,013:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 5
+
'''Problem 5'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
The most commonly used definition of redshift is
 
The most commonly used definition of redshift is
Line 3,037: Line 3,037:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 6
+
'''Problem 6'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Argue why, on physical grounds, we can't extrapolate beyond $y=1$.
 
Argue why, on physical grounds, we can't extrapolate beyond $y=1$.
Line 3,050: Line 3,050:
 
<div id="cg_7"></div>
 
<div id="cg_7"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 7
+
'''Problem 7'''
 
<p style= "color: #999;font-size: 11px">problem id: cg_7</p>
 
<p style= "color: #999;font-size: 11px">problem id: cg_7</p>
 
The most commonly used distance is the luminosity distance, and it is related to the distance modulus in the following way:
 
The most commonly used distance is the luminosity distance, and it is related to the distance modulus in the following way:
Line 3,078: Line 3,078:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
  Problem 8
+
'''Problem 8'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Do the same for the distance modulus directly.
 
Do the same for the distance modulus directly.
Line 3,091: Line 3,091:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 9
+
'''Problem 9'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Do problem [[#cg_7]] but for $y$-redshift.
 
Do problem [[#cg_7]] but for $y$-redshift.
Line 3,109: Line 3,109:
 
<div id="cg_10"></div>
 
<div id="cg_10"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 10
+
'''Problem 10'''
 
<p style= "color: #999;font-size: 11px">problem id: cg_10</p>
 
<p style= "color: #999;font-size: 11px">problem id: cg_10</p>
 
Obtain the THIRD-order luminosity distance expansion in terms of $z$-redshift
 
Obtain the THIRD-order luminosity distance expansion in terms of $z$-redshift
Line 3,123: Line 3,123:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 11
+
'''Problem 11'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Alternative (if less physically evident) redshifts are also viable. One promising redshift is the $y_4$ redshift: $y_4 = \arctan(y)$. Obtain the second order redshift formula for $d_L$ in terms of $y_4$. <!--(from Aviles article - YredshiftBolotinRecommended)-->
 
Alternative (if less physically evident) redshifts are also viable. One promising redshift is the $y_4$ redshift: $y_4 = \arctan(y)$. Obtain the second order redshift formula for $d_L$ in terms of $y_4$. <!--(from Aviles article - YredshiftBolotinRecommended)-->
Line 3,136: Line 3,136:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 12
+
'''Problem 12'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
$H_0a_0/c\gg1$ is a generic prediction of inflationary cosmology. Why is this an obstacle in proving/measuring the curvature of pace based on cosmographic methods?
 
$H_0a_0/c\gg1$ is a generic prediction of inflationary cosmology. Why is this an obstacle in proving/measuring the curvature of pace based on cosmographic methods?
Line 3,150: Line 3,150:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
  Problem 13
+
'''Problem 13'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
When looking  at the various series formulas, you might be tempted to just take the highest-power formulas you can get and work with them.  Why is this not a good idea?
 
When looking  at the various series formulas, you might be tempted to just take the highest-power formulas you can get and work with them.  Why is this not a good idea?
Line 3,163: Line 3,163:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 14
+
'''Problem 14'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Using the definition of the redshift, find the ratio \[\frac{\Delta z}{\Delta t_{obs}},\] called "redshift drift" through the Hubble Parameter for a fixed/commoving observer and emitter:
 
Using the definition of the redshift, find the ratio \[\frac{\Delta z}{\Delta t_{obs}},\] called "redshift drift" through the Hubble Parameter for a fixed/commoving observer and emitter:
Line 3,177: Line 3,177:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 15
+
'''Problem 15'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
A photon's physical distance traveled is \[D=c\int dt=c(t_0-t_s).\] Using the definition of the redshift, construct a power series for $z$-redshift based on this physical distance.
 
A photon's physical distance traveled is \[D=c\int dt=c(t_0-t_s).\] Using the definition of the redshift, construct a power series for $z$-redshift based on this physical distance.
Line 3,190: Line 3,190:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 16
+
'''Problem 16'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Invert result of the previous problem (up to $z^3$).
 
Invert result of the previous problem (up to $z^3$).
Line 3,203: Line 3,203:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 17
+
'''Problem 17'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Obtain a power series (in $z$) breakdown of redshift drift up to $z^3$ (hint: use $(dH)/(dz)$ formulas)
 
Obtain a power series (in $z$) breakdown of redshift drift up to $z^3$ (hint: use $(dH)/(dz)$ formulas)
Line 3,216: Line 3,216:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 18
+
'''Problem 18'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Using the Friedmann equations, continuity equations, and the standard definitions for heat capacity(that is, \[C_V=\frac{\partial U}{\partial T},\quad C_P=\frac{\partial h}{\partial T},\] where  $U=V_0\rho_ta^3$, $h=V_0(\rho_t+P)a^3$, show that
 
Using the Friedmann equations, continuity equations, and the standard definitions for heat capacity(that is, \[C_V=\frac{\partial U}{\partial T},\quad C_P=\frac{\partial h}{\partial T},\] where  $U=V_0\rho_ta^3$, $h=V_0(\rho_t+P)a^3$, show that
Line 3,231: Line 3,231:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 19
+
'''Problem 19'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
What signs of $C_p$ and $C_v$ are predicted by the $\Lambda-CDM$ model? ($q_{0\Lambda CDM}=-1+\frac32\Omega_m$, $j_{0\Lambda CDM}=1$ and experimentally, $\Omega_m=0.274\pm0.015$)
 
What signs of $C_p$ and $C_v$ are predicted by the $\Lambda-CDM$ model? ($q_{0\Lambda CDM}=-1+\frac32\Omega_m$, $j_{0\Lambda CDM}=1$ and experimentally, $\Omega_m=0.274\pm0.015$)
Line 3,244: Line 3,244:
 
<div id="cg_20"></div>
 
<div id="cg_20"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 20
+
'''Problem 20'''
 
<p style= "color: #999;font-size: 11px">problem id: cg_20</p>
 
<p style= "color: #999;font-size: 11px">problem id: cg_20</p>
 
In cosmology, the scale factor is sometimes presented as a power series
 
In cosmology, the scale factor is sometimes presented as a power series
Line 3,260: Line 3,260:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 21
+
'''Problem 21'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
What values of the powers in the power series are required for the following singularities?
 
What values of the powers in the power series are required for the following singularities?
Line 3,282: Line 3,282:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 22
+
'''Problem 22'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Analyze the possible behavior of the Hubble parameter around the cosmological milestones (hint: use your solution of problem [[#cg_20]]).
 
Analyze the possible behavior of the Hubble parameter around the cosmological milestones (hint: use your solution of problem [[#cg_20]]).
Line 3,309: Line 3,309:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 23
+
'''Problem 23'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Going outside of the bounds of regular cosmography, let's assume the validity of the Friedmann equations. It is sometimes useful to expand the Equation of State as a series (like $p=p_0+\kappa_0(\rho-\rho_0)+O[(\rho-\rho_0)^2],$) and describe the EoS parameter ($w9t)=p/\rho$) at arbitrary times through the cosmographic parameters.
 
Going outside of the bounds of regular cosmography, let's assume the validity of the Friedmann equations. It is sometimes useful to expand the Equation of State as a series (like $p=p_0+\kappa_0(\rho-\rho_0)+O[(\rho-\rho_0)^2],$) and describe the EoS parameter ($w9t)=p/\rho$) at arbitrary times through the cosmographic parameters.
Line 3,322: Line 3,322:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 24
+
'''Problem 24'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Analogously to the previous problem, analyze the slope parameter \[\kappa=\frac{dp}{d\rho}.\] Specifically, we are interested in the slope parameter at the present time, since that is the value that is seen in the series expansion.
 
Analogously to the previous problem, analyze the slope parameter \[\kappa=\frac{dp}{d\rho}.\] Specifically, we are interested in the slope parameter at the present time, since that is the value that is seen in the series expansion.
Line 3,341: Line 3,341:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem 25
+
'''Problem 25'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Continuing the previous problem, let's look at the third order term - $d^2 p/d\rho^2$.
 
Continuing the previous problem, let's look at the third order term - $d^2 p/d\rho^2$.
Line 3,366: Line 3,366:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,379: Line 3,379:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,392: Line 3,392:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,405: Line 3,405:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,418: Line 3,418:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,431: Line 3,431:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,444: Line 3,444:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,457: Line 3,457:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,470: Line 3,470:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,483: Line 3,483:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,496: Line 3,496:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,509: Line 3,509:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,522: Line 3,522:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,535: Line 3,535:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,548: Line 3,548:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,561: Line 3,561:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,574: Line 3,574:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,587: Line 3,587:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,600: Line 3,600:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,613: Line 3,613:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,626: Line 3,626:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,639: Line 3,639:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,652: Line 3,652:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,665: Line 3,665:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,678: Line 3,678:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,691: Line 3,691:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,704: Line 3,704:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,717: Line 3,717:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,730: Line 3,730:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 3,743: Line 3,743:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  Problem  
+
'''Problem '''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  

Revision as of 21:50, 29 January 2015



New from 26-12-2014


Problem 1

problem id: 2612_1

Find dimension of the Newtonian gravitational constant $G$ and electric charge $e$ in the $N$-dimensional space.


Problem 2

problem id: 2612_2

In 1881, Johnson Stoney proposed a set of fundamental units involving $c$, $G$ and $e$. Construct Stoney's natural units of length, mass and time.


Problem 3

problem id: 2612_3

Show that the fine structure constant $\alpha=e^2/(\hbar c)$ can be used to convert between Stoney and Planck units.


Problem 4

problem id: 2612_4

Gibbons [G W Gibbons, The Maximum Tension Principle in General Relativity, arXiv:0210109] formulated a hypothesis, that in General Relativity there should be a maximum value to any physically attainable force (or tension) given by

   \begin{equation}\label{2612_e_1}
    F_{max}=\frac{c^4}{4G}.
    \end{equation}

This quantity can be constructed with help of the Planck units: \[F_{max}=\frac14M_{Pl}L_{Pl}T_{Pl}^{-2}.\] The origin of the numerical coefficient $1/4$ has no deeper meaning. It simply turns out that $1/4$ is the value that leads to the correct form of the field equations of General Relativity. The above made assumption leads to existence of a maximum power defined by

   \begin{equation}\label{2612_e_2}
    P_{max}=\frac{c^5}{G}.
    \end{equation}

{\it There is a hypothesis [C. Schiller, General relativity and cosmology derived from principle of maximum power or force, arXiv:0607090], that the maximum force (or power) plays the same role for general relativity as the maximum speed plays for special relativity.}

The black holes are usually considered as an extremal solution of GR equations, realizing the limiting values of the physical quantities. Show that the value $c^4/(4G)$ of the force limit is the energy of a Schwarzschild black hole divided by twice its radius. The maximum power $c^5/(4G)$ is realized when such a black hole is radiated away in the time that light takes to travel along a length corresponding to twice the radius.


Problem 5

problem id: 2612_5

E. Berti, A Black-Hole Primer: Particles, Waves, Critical Phenomena and Superradiant instabilities (arXiv:1410.4481[gr-qc])

A Newtonian analog of the black hole concept is a so-called "dark star". If we consider light as a corpuscle traveling at speed $c$, light cannot escape to infinity whenever \[V_{esc}>c \quad \left(V_{esc}^2=\frac{2GM}{R}\right)/\] Therefore the condition for existence of "dark stars" in Newtonian mechanics is

\[\frac{2GM}{c^2R}\ge1.\]

   Can this condition be satisfied in the Newtonian mechanics?


Problem 6

problem id: 2612_6

The lookback time is defined as the difference between the present day age of the Universe and its age at redshift $z$, i.e. the difference between the age of the Universe at observation $t_0$ and the age of the Universe, $t$, when the photons were emitted. Find the lookback time for the Universe filled by non-relativistic matter, radiation and a component with the state equation $p=w(z)\rho$.


Problem 7

problem id: 2612_7

Find the solutions corrected by LQC Friedmann equations for a matter dominated Universe.


Problem 8

problem id: 2612_8

Show that in the case of the flat Friedmann metric, the third power of the scale factor $\varphi=a^3$ satisfies the equation \[\frac{d^2t\varphi}{dt^2}=\frac32(\rho-p)\varphi,\quad 8\pi G=1.\] Check validity of this equation for different cosmological components: non-relativistic matter, cosmological constant and a component with the state equation $p=w\rho$.


Problem 9

problem id:

It is of broad interest to understand better the nature of the early Universe especially the Big Bang. The discovery of the CMB in 1965 resolved a dichotomy then existing in theoretical cosmology between steady-state and Big Bang theories. The interpretation of the CMB as a relic of a Big Bang was compelling and the steady-state theory died. Actually at that time it was really a trichotomy being reduced to a dichotomy because a third theory is a cyclic cosmology model. Give a basic argument of the opponents to the latter model.


Problem 10

problem id: 2612_10

Express the present epoch value of the Ricci scalar $R$ and its first derivative in terms of $H_0$ and its derivatives (flat case).


New from 13-01-2015


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:


Problem

problem id:

Exactly Integrable n-dimensional Universes

Exactly Integrable n-dimensional Universes

Problem 1

problem id: gnd_1

Derive Friedmann equations for the spatially n-dimensional Universe.


Problem 2

problem id: gnd_2

Obtain the energy conservation law for the case of n-dimensional Universe.


Problem 3

problem id: gnd_3

Obtain relation between the energy density and scale factor in the case of a two-component n-dimensional Universe dominated by the cosmological constant and a barotropic fluid.


Problem 4

problem id: gnd_4

Obtain equation of motion for the scale factor for the previous problem.


To integrate (\ref{14}), we recall Chebyshev's theorem:

For rational numbers $p,q,r$ ($r\neq0$) and nonzero real numbers $\alpha,\beta$, the integral $\int x^p(\alpha+\beta x^r)^q\,d x$ is elementary if and only if at least one of the quantities \begin{equation}\label{cd} \frac{p+1}r,\quad q,\quad \frac{p+1}r+q, \end{equation} is an integer.

Another way to see the validity of the Chebyshev theorem is to represent the integral of concern by a hypergeometric function such that when a quantity in (\ref{cd}) is an integer the hypergeometric function is reduced into an elementary function. Consequently, when $k=0$ or $\Lambda=0$, and $w$ is rational, the Chebyshev theorem enables us to know that, for exactly what values of $n$ and $w$, the equation (\ref{14}) may be integrated.


Problem 5

problem id: gnd_4_0

Obtain analytic solutions for the equation of motion for the scale factor of the previous problem for spatially flat ($k=0$) Universe.


Problem 6

problem id: gnd_5

Use the analytic solutions obtained in the previous problem to study cosmology with $w>-1$ and $a(0)=0$.


Problem 7

problem id: gnd_6

Use results of the previous problem to calculate the deceleration $q=-a\ddot a/\dot a^2$ parameter.


Problem 8

problem id: gnd_4_1

Obtain the exact solvability conditions for the case $\Lambda=0$ in equation (\ref{14}) (see problem #gnd_4 ).


Problem 9

problem id: gnd_4_2

Obtain the explicit solutions for the case $n=3$ and $w=-5/9$ in the previous problem.


Problem 10

problem id: gnd_10

Rewrite equation of motion for the scale factor (\ref{14}) in terms of the conformal time.


Problem 11

problem id: gnd_11

Find the rational values of the equation of state parameter $w$ which provide exact integrability of the equation (\ref{48}) with $k=0$.


Problem 12

problem id: gnd_12

Obtain explicit solutions for the case $w=\frac1n-1$ in the previous problem.


Problem 13

problem id: gnd_13

Obtain exact solutions for the equation (\ref{48}) with $\Lambda=0$.


Problem 14

problem id: gnd_14

Obtain inflationary solutions using the results of the previous problem.


UNSORTED NEW Problems

The history of what happens in any chosen sample region is the same as the history of what happens everywhere. Therefore it seems very tempting to limit ourselves with the formulation of Cosmology for the single sample region. But any region is influenced by other regions near and far. If we are to pay undivided attention to a single region, ignoring all other regions, we must in some way allow for their influence. E. Harrison in his book Cosmology, Cambridge University Press, 1981 suggests a simple model to realize this idea. The model has acquired the name of "Cosmic box" and it consists in the following.

Imaginary partitions, comoving and perfectly reflecting, are used to divide the Universe into numerous separate cells. Each cell encloses a representative sample and is sufficiently large to contain galaxies and clusters of galaxies. Each cell is larger than the largest scale of irregularity in the Universe, and the contents of all cells are in identical states. A partitioned Universe behaves exactly as a Universe without partitions. We assume that the partitions have no mass and hence their insertion cannot alter the dynamical behavior of the Universe. The contents of all cells are in similar states, and in the same state as when there were no partitions. Light rays that normally come from very distant galaxies come instead from local galaxies of long ago and travel similar distances by multiple re?ections. What normally passes out of a region is reflected back and copies what normally enters a region.

Let us assume further that the comoving walls of the cosmic box move apart at a velocity given by the Hubble law. If the box is a cube with sides of length $L$, then opposite walls move apart at relative velocity $HL$.Let us assume that the size of the box $L$ is small compared to the Hubble radius $L_{H} $ , the walls have a recession velocity that is small compared to the velocity of light. Inside a relatively small cosmic box we use ordinary everyday physics and are thus able to determine easily the consequences of expansion. We can even use Newtonian mechanics to determine the expansion if we embed a spherical cosmic box in Euclidean space.


Problem 1

problem id:

As we have shown before (see Chapter 3): $p(t)\propto a(t)^{-1} $ , so all freely moving particles, including galaxies (when not bound in clusters), slowly lose their peculiar motion and ultimately become stationary in expanding space. Try to understand what happens by considering a moving particle inside an expanding cosmic box


Problem 2

problem id:

Show that at redshift $z=1$ , when the Universe is half its present size, the kinetic energy of a freely moving nonrelativistic particle is four times its present value, and the energy of a relativistic particle is twice its present value.


Problem 3

problem id:

Let the cosmic box is filled with non-relativistic gas. Find out how the gas temperature varies in the expanding cosmic box.


Problem 4

problem id:

Show that entropy of the cosmic box is conserved during its expansion.


Problem 5

problem id:

Consider a (cosmic) box of volume V, having perfectly reflecting walls and containing radiation of mass density $\rho $. The mass of the radiation in the box is $M=\rho V$ . We now weigh the box and find that its mass, because of the enclosed radiation, has increased not by M but by an amount 2M. Why?


Problem 6

problem id:

Show that the jerk parameter is \[j(t)=q+2q^{2} -\frac{\dot{q}}{H} \]


Problem 7

problem id:

We consider FLRW spatially flat Universe with the general Friedmann equations \[\begin{array}{l} {H^{2} =\frac{1}{3} \rho +f(t),} \\ {\frac{\ddot{a}}{a} =-\frac{1}{6} \left(\rho +3p\right)+g(t)} \end{array}\] Obtain the general conservation equation.


Problem 8

problem id:

Show that for extra driving terms in the form of the cosmological constant the general conservation equation (see previous problem) transforms in the standard conservation equation.


Problem 9

problem id:

Show that case $f(t)=g(t)=\Lambda /3$ corresponds to $\Lambda (t)CDM$ model.