Difference between revisions of "New problems"

From Universe in Problems
Jump to: navigation, search
(The Power-Law Cosmology)
(Hybrid Expansion Law)
Line 270: Line 270:
 
----
 
----
  
==Hybrid Expansion Law==
 
[[Hybrid Expansion Law|'''Hybrid Expansion Law''']]
 
 
In problems [[#SSC_18]] - [[#SSC_19_0]] we follow the paper of Ozgur Akarsu,  Suresh Kumar, R. Myrzakulov, M. Sami,  and Lixin Xu4, Cosmology with hybrid expansion law: scalar  field reconstruction of cosmic history and observational constraints (arXiv:1307.4911) to study expansion history of  Universe, using the hybrid expansion law---a product of power-law and exponential type of functions
 
\[a(t)=a_0\left(\frac{t}{t_0}\right)^\alpha\exp\left[\beta\left(\frac{t}{t_0}-1\right)\right],\]
 
where $\alpha$ and $\beta$ are non-negative constants. Further $a_0$ and $t_0$ respectively denote the scale factor and age of the Universe today.
 
 
<div id="SSC_18"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_18</p>
 
Calculate Hubble parameter, deceleration parameter and jerk parameter for hybrid expansion law.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">\[H=\frac{\dot a}{a}=\frac\alpha t+\frac\beta{t_0},\]
 
\[q=-\frac{\ddot a}{aH^2}=\frac{\alpha t_0^2}{(\beta t +\alpha t_0)^2}-1,\]
 
\[j=\frac{\ddot a}{aH^3}=1+\frac{(2t_0-3\beta t-3\alpha t_0)\alpha t_0^2}{(\beta t+\alpha t_0)^3}.\]</p>
 
  </div>
 
</div></div>
 
 
 
<div id="SSC_18_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_18_2</p>
 
For hybrid expansion law find $a, H, q$ and $j$ in the cases of very early Universe $(t\to0)$ and for the late times $(t\to\infty)$.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">\[t\to0:\]
 
\[a\to a_0\left(\frac{t}{t_0}\right)^\alpha,\quad H\to\frac\alpha t,\quad q\to-1+\frac1\alpha,\quad j\to 1-\frac3\alpha + \frac2{\alpha^2};\]
 
\[t\to\infty:\]
 
\[a\to a_0\exp\left[\beta\left(\frac{t}{t_0}-1\right)\right],\quad H\to\frac\beta{t_0},\quad q\to-1,\quad j\to1.\]
 
</p>
 
  </div>
 
</div></div>
 
 
 
<div id="SSC_18_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_18_3</p>
 
In general relativity, one can always introduce an effective source that gives rise to a given expansion law. Using the ansatz of hybrid expansion law obtain the EoS parameter of the effective fluid.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">\[\rho = 3H^2,\]
 
\[p=-2\frac{\ddot a}a -H^2=-2\dot H-3H^2,\]
 
\[w=\frac p\rho=-\frac23\frac{\dot H}{H^2}-1,\]
 
\[H=\frac\alpha{t}+\frac\beta{t_0},\quad \dot H=-\frac\alpha{t^2},\]
 
\[w=\frac23\frac\alpha{t^2}\left(\frac\alpha{t}+\frac\beta{t_0}\right)^{-2}-1.\]</p>
 
  </div>
 
</div></div>
 
 
 
<div id="SSC_19"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 4'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19</p>
 
We can always construct a scalar field Lagrangian which can mimic a given cosmic history. Consequently,  we can consider the quintessence realization of the hybrid expansion law. Find time dependence for the the quintessence field $\varphi(t)$ and potential $V(t)$, realizing the hybrid expansion law. Obtain the dependence $V(\varphi)$.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">The energy density and pressure of the quintessence minimally coupled to gravity can be given by
 
\[\rho=\frac12\dot\varphi^2+V(\varphi),\quad p=\frac12\dot\varphi^2-V(\varphi),\]
 
Using the hybrid expansion law and relation \[p+\rho=-2\dot H=\frac{2\alpha}{t^2}\] we find
 
\[\varphi(t)=\sqrt{2\alpha}\ln(t)+\varphi_1\]
 
\[V(t)=3\left(\frac\alpha{t}+\frac\beta{t_0}\right)^{2}-\frac\alpha{t^2},\]
 
where $\varphi_1$ is the integration constant.
 
The potential as a function of the scalar field $\varphi$ is then given by the following expression:
 
\[V(\varphi)=3\beta^2e^{-\sqrt{\frac2\alpha}(\varphi_0-\varphi_1)}+\alpha(3\alpha-1)e^{-\sqrt{\frac2\alpha}(\varphi-\varphi_1)} + 6\alpha\beta e^{-\frac12\sqrt{\frac2\alpha}(\varphi+\varphi_0-2\varphi_1)}\]
 
where $\varphi_0=\varphi_1+\sqrt{2\alpha}\ln(t_0)$.</p>
 
  </div>
 
</div></div>
 
 
 
<div id="SSC_19_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 5'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19_1</p>
 
Quintessence paradigm relies on the potential energy of scalar fields to drive the late time acceleration of the Universe. On the other hand, it is also possible to relate the late time acceleration of the Universe with the kinetic term of the scalar field by relaxing its canonical kinetic term. In particular this idea can be realized with the help of so-called tachyon fields, for which
 
\[\rho=\frac{V(\varphi)}{\sqrt{1-\dot\varphi^2}},\quad p=-V(\varphi)\sqrt{1-\dot\varphi^2}.\]
 
Find time dependence of the tachyon field $\varphi(t)$ and potential $V(t)$, realizing the hybrid expansion law. Construct the potential $V(\varphi)$.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">For the tachyon field
 
\[\frac p\rho=w=-1+\dot\varphi^2.\]
 
Any realization of the hybrid expansion law gives
 
\[\frac23\frac\alpha{t^2}\left(\frac\alpha{t}+\frac\beta{t_0}\right)^{-2}-1.\]
 
Consequently,
 
\[\dot\varphi= \sqrt{\frac{2\alpha}{3}}\left(\alpha+\beta\frac{t}{t_0}\right)^{-1}\]
 
Integration of the latter results in the following
 
\[\varphi(t)=\sqrt{\frac{2\alpha t_0^2}{3\beta}}\ln{(\beta t+\alpha t_0)}+\varphi_2\]
 
and
 
\[V(t)=3\left(\frac\alpha{t}+\frac\beta{t_0}\right)^{2}\sqrt{1-\frac{2\alpha t_0^2}{3(\beta t+\alpha t_0)^2}}.\]
 
where $\varphi_2$ is an integration constant.
 
 
The corresponding tachyon potential is given by
 
\[V(\varphi)=\frac{3 \beta ^2}{t_{0}^2}e^{\sqrt{\frac{6\beta^2}{\alpha t_{0}^2}}(\varphi-\varphi_{2})}\sqrt{1-\frac{2}{3}\alpha t_{0}^2 e^{\sqrt{\frac{6\beta^2}{\alpha t_{0}^2}}(\varphi-\varphi_{2})}}\left(\alpha t_{0}-e^{\frac{1}{2}\sqrt{\frac{6\beta^2}{\alpha t_{0}^2}}(\varphi-\varphi_{2})}\right)^{-2}.\]
 
</p>
 
  </div>
 
</div></div>
 
 
 
<div id="SSC_19_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 6'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19_2</p>
 
Calculate Hubble parameter and deceleration parameter for the case of phantom field in which the energy density and pressure are respectively given by
 
\[\rho =-\frac{1}{2}\dot{\varphi}^2+V(\varphi),\quad p =-\frac{1}{2}\dot{\varphi}^2-V(\varphi).\]
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">In case of the phantom scenario, the hybrid expansion law ansatz must be slightly modified in order to acquire self consistency. In particular, we rescale time as $t\rightarrow t_{s}-t$, where $t_{s}$ is a sufficiently positive reference time. Thus, the hybrid expansion law ansatz becomes
 
\[a(t)=a_{0}\left(\frac{t_{s}-t}{t_{s}-t_{0}}\right)^{\alpha}e^{\beta \left(\frac{t_{s}-t}{t_{s}-t_{0}}-1\right)},\]
 
where $\alpha<0$.
 
Then
 
\[
 
H=-\frac{\alpha}{t_{s}-t}-\frac{\beta}{t_{s}-t_{0}},
 
\]
 
\[
 
\dot{H}=-\frac{\alpha}{(t_{s}-t)^2},
 
\]
 
\[
 
q=\frac{\alpha (t_{s}-t_{0})^2}{[\beta (t_{s}-t)+\alpha (t_{s}-t_{0})]^{2}}-1.
 
\]</p>
 
  </div>
 
</div></div>
 
 
 
<div id="SSC_19_0"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 7'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19_0</p>
 
Solve the problem [[#SSC_19]] for the case of phantom field.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">\[\varphi(t)=\sqrt{-2\alpha }\ln(t_{s}-t)+\varphi_{3},\]
 
\[V{(t)}=3\left(\frac{\alpha}{t_{s}-t}+\frac{\beta}{t_{s}-t_{0}}\right)^2-\frac{\alpha}{(t_{s}-t)^2},\]
 
\[V(\varphi) = 3\beta^{2}e^{-\sqrt{-\frac{2}{\alpha }}(\varphi_{0}-\varphi_{3})}+\alpha(3\alpha-1)e^{-\sqrt{-\frac{2}{\alpha }}(\varphi-\varphi_{3})}
 
+6\alpha\beta e^{\frac{1}{2}\sqrt{-\frac{2}{\alpha }}(\varphi+\varphi_{0}-2\varphi_{3})},
 
\]
 
where $\varphi_{0}=\varphi_{3}+\sqrt{-2\alpha }\ln(t_{s}-t_{0})$.
 
 
We observe that $\alpha<0$ leads to $q<0$ (acceleration) and \[\dot{H}=-\frac{\alpha}{(t_{s}-t)^2}>0\] (super acceleration)</p>
 
  </div>
 
</div></div>
 
 
 
<div id="SSC_19_12"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 8'''
 
<p style= "color: #999;font-size: 11px">problem id: SSC_19_12</p>
 
Find EoS parameter for the case of phantom field.
 
<!--<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;"></p>
 
  </div>
 
</div>--></div>
 
  
  

Revision as of 21:58, 18 June 2015




New from march 2015

New from march 2015


New from Dec 2014

New from Dec 2014


Exactly Integrable n-dimensional Universes

Exactly Integrable n-dimensional Universes


UNSORTED NEW Problems

The history of what happens in any chosen sample region is the same as the history of what happens everywhere. Therefore it seems very tempting to limit ourselves with the formulation of Cosmology for the single sample region. But any region is influenced by other regions near and far. If we are to pay undivided attention to a single region, ignoring all other regions, we must in some way allow for their influence. E. Harrison in his book Cosmology, Cambridge University Press, 1981 suggests a simple model to realize this idea. The model has acquired the name of "Cosmic box" and it consists in the following.

Imaginary partitions, comoving and perfectly reflecting, are used to divide the Universe into numerous separate cells. Each cell encloses a representative sample and is sufficiently large to contain galaxies and clusters of galaxies. Each cell is larger than the largest scale of irregularity in the Universe, and the contents of all cells are in identical states. A partitioned Universe behaves exactly as a Universe without partitions. We assume that the partitions have no mass and hence their insertion cannot alter the dynamical behavior of the Universe. The contents of all cells are in similar states, and in the same state as when there were no partitions. Light rays that normally come from very distant galaxies come instead from local galaxies of long ago and travel similar distances by multiple re?ections. What normally passes out of a region is reflected back and copies what normally enters a region.

Let us assume further that the comoving walls of the cosmic box move apart at a velocity given by the Hubble law. If the box is a cube with sides of length $L$, then opposite walls move apart at relative velocity $HL$.Let us assume that the size of the box $L$ is small compared to the Hubble radius $L_{H} $ , the walls have a recession velocity that is small compared to the velocity of light. Inside a relatively small cosmic box we use ordinary everyday physics and are thus able to determine easily the consequences of expansion. We can even use Newtonian mechanics to determine the expansion if we embed a spherical cosmic box in Euclidean space.


Problem 1

problem id:

As we have shown before (see Chapter 3): $p(t)\propto a(t)^{-1} $ , so all freely moving particles, including galaxies (when not bound in clusters), slowly lose their peculiar motion and ultimately become stationary in expanding space. Try to understand what happens by considering a moving particle inside an expanding cosmic box


Problem 2

problem id:

Show that at redshift $z=1$ , when the Universe is half its present size, the kinetic energy of a freely moving nonrelativistic particle is four times its present value, and the energy of a relativistic particle is twice its present value.


Problem 3

problem id:

Let the cosmic box is filled with non-relativistic gas. Find out how the gas temperature varies in the expanding cosmic box.


Problem 4

problem id:

Show that entropy of the cosmic box is conserved during its expansion.


Problem 5

problem id:

Consider a (cosmic) box of volume V, having perfectly reflecting walls and containing radiation of mass density $\rho $. The mass of the radiation in the box is $M=\rho V$ . We now weigh the box and find that its mass, because of the enclosed radiation, has increased not by M but by an amount 2M. Why?


Problem 6

problem id:

Show that the jerk parameter is \[j(t)=q+2q^{2} -\frac{\dot{q}}{H} \]


Problem 7

problem id:

We consider FLRW spatially flat Universe with the general Friedmann equations \[\begin{array}{l} {H^{2} =\frac{1}{3} \rho +f(t),} \\ {\frac{\ddot{a}}{a} =-\frac{1}{6} \left(\rho +3p\right)+g(t)} \end{array}\] Obtain the general conservation equation.


Problem 8

problem id:

Show that for extra driving terms in the form of the cosmological constant the general conservation equation (see previous problem) transforms in the standard conservation equation.


Problem 9

problem id:

Show that case $f(t)=g(t)=\Lambda /3$ corresponds to $\Lambda (t)CDM$ model.