Difference between revisions of "New problems"

From Universe in Problems
Jump to: navigation, search
(Hybrid Expansion Law)
(Bianchi I Model)
Line 273: Line 273:
  
 
----
 
----
 
==Bianchi I Model==
 
[[Bianchi I Model|'''Bianchi I Model''']]
 
 
(after Esra Russell, Can Battal Kılınç, Oktay K. Pashaev, Bianchi I Models: An Alternative Way To Model The Present-day Universe, arXiv:1312.3502)
 
 
 
Theoretical arguments and indications from recent observational data support the existence of an anisotropic phase that approaches an isotropic one. Therefore, it makes sense to consider models of a Universe with an initially anisotropic background. The anisotropic and homogeneous Bianchi models may provide adequate description of anisotropic phase in history of Universe. One particular type of such models is Bianchi type I (BI) homogeneous models whose spatial sections are flat, but the expansion rates are direction dependent,
 
\[ds^2={c^2}dt^2-a^{2}_{1}(t)dx^2-a^{2}_{2}(t)dy^2-a^{2}_{3}(t)dz^2\]
 
where $a_{1}$, $a_{2}$ and $a_{3}$ represent three different scale factors which are a function of time $t$.
 
 
<div id="bianchi_01"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 1'''
 
<p style= "color: #999;font-size: 11px">problem id: bianchi_01</p>
 
Find the field equations of the BI Universe.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">If we admit the energy-momentum tensor of a perfect fluid, then the field equations of the BI universe are found as,
 
 
\begin{eqnarray}
 
\label{feforgm}\frac{{\dot{a}_{1}}{\dot{a}_{2}}}{a_{1} a_{2}}+\frac{{\dot{a}_{1}}{\dot{a}_{3}}}{a_{1}
 
a_{3}}+\frac{{\dot{a}_{2}}{\dot{a}_{3}}}{a_{2} a_{3}}&=&\rho,\\
 
\frac{{\ddot{a}_{1}}}{a_{1}}+\frac{{\ddot{a}_{3}}}{a_{3}}+\frac{{\dot{a}_{1}}{\dot{a}_{3}}}{a_{1} a_{3}}&=&
 
-p,\\
 
\frac{{\ddot{a}_{2}}}{a_{2}}+\frac{{\ddot{a}_{1}}}{a_{1}}+\frac{{\dot{a}_{2}}{\dot{a}_{1}}}{a_{2}
 
a_{1}}&=&-p,\\
 
\frac{{\ddot{a}_{3}}}{a_{3}}+\frac{{\ddot{a}_{2}}}{a_{2}}+\frac{{\dot{a}_{3}}{\dot{a}_{2}}}{a_{3}
 
a_{2}}&=&-p.
 
\end{eqnarray}</p>
 
  </div>
 
</div></div>
 
 
 
<div id="bi_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 2'''
 
<p style= "color: #999;font-size: 11px">problem id: bi_2</p>
 
Reformulate the field equations of the BI Universe in terms of the directional Hubble parameters.
 
\[H_1\equiv\frac{\dot{a_1}}{a_1},\ H_2\equiv\frac{\dot{a_2}}{a_2},\ H_3\equiv\frac{\dot{a_3}}{a_3}.\]
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">Inserting the directional Hubble parameters and their time derivatives
 
\[\dot H_1=\frac{\ddot a_1}{a_1}-\left(\frac{\dot a_1}{a_1}\right)^2,\ \dot H_2=\frac{\ddot a_2}{a_2}-\left(\frac{\dot a_2}{a_2}\right)^2,\ \dot H_3=\frac{\ddot a_3}{a_3}-\left(\frac{\dot a_3}{a_3}\right)^2\]
 
into the modified Friedmann equations we obtain
 
\begin{align}
 
\nonumber
 
H_1H_2+H_1H_3+H_2H_3 & =\rho,\\
 
\nonumber
 
\dot H_1+ H_1^2 +\dot H_3+ H_3^2 +H_1H_3& =-p,\\
 
\nonumber
 
\dot H_1+ H_1^2 +\dot H_2+ H_2^2 +H_1H_2& =-p,\\
 
\nonumber
 
\dot H_2+ H_2^2 +\dot H_3+ H_3^2 +H_2H_3& =-p.
 
\end{align}</p>
 
  </div>
 
</div></div>
 
 
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 3'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
The BI Universe has a flat metric, which implies that its total density is equal to the critical density. Find the  critical density.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">\[\rho_{cr}=H_1H_2+H_1H_3+H_2H_3.\]</p>
 
  </div>
 
</div></div>
 
 
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 4'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Obtain an analogue of the conservation equation $\dot\rho+3H(\rho+p)=0$ for the case of the BI Universe.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">The energy conservation equation $T^\mu_{\nu;\mu}=0$ yields
 
\[\dot\rho+3\bar H(\rho+p)=0,\quad \bar H\equiv \frac13(H_1+H_2+H_3)=\frac13\left(\frac{\dot a_1}{a_1} +\frac{\dot a_2}{a_2} +\frac{\dot a_3}{a_3}\right),\]
 
where $\bar H$ represents the mean of the three directional Hubble parameters in the BI Universe.</p>
 
  </div>
 
</div></div>
 
 
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 5'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Obtain the evolution equation for the mean of the three directional Hubble parameters $\bar H$.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">Adding the three latter Friedmann equations (see Problem \ref{bi_2}) one obtains
 
\begin{equation}\label{bi_5_1}
 
2\frac{d}{dt}\sum\limits_{i=1}^3 H_i+2(H_1^2+H_2^2+H_3^2)+H_1H_2+H_1H_3+H_2H_3=-3p.
 
\end{equation}
 
where $\bar H$ represents the mean of the three directional Hubble parameters in the BI Universe.
 
Substituting
 
\[\sum\limits_{i=1}^3 H_i^2=\left(\sum\limits_{i=1}^3 H_i\right)^2-2(H_1H_2+H_1H_3+H_2H_3)\]
 
and
 
\[H_1H_2+H_1H_3+H_2H_3=\rho\]
 
into equation (\ref{bi_5_1}), we then obtain
 
\[\frac{d}{dt}\sum\limits_{i=1}^3 H_i+\left(\sum\limits_{i=1}^3 H_i\right)^2=\frac32(\rho-p).\]
 
Using the mean of the three directional Hubble parameters $\bar H$ we obtain a nonlinear first order differential equation
 
\[\dot{\bar H}+3\bar H^2=\frac12(\rho-p).\]</p>
 
  </div>
 
</div></div>
 
 
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 6'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that the system of equations for the BI Universe
 
\begin{align}
 
\nonumber
 
H_1H_2+H_1H_3+H_2H_3 & =\rho,\\
 
\nonumber
 
\dot H_1+ H_1^2 +\dot H_3+ H_3^2 +H_1H_3& =-p,\\
 
\nonumber
 
\dot H_1+ H_1^2 +\dot H_2+ H_2^2 +H_1H_2& =-p,\\
 
\nonumber
 
\dot H_2+ H_2^2 +\dot H_3+ H_3^2 +H_2H_3& =-p,
 
\end{align}
 
can be transformed to the following
 
\begin{align}
 
\nonumber
 
H_1H_2+H_1H_3+H_2H_3 & =\rho,\\
 
\nonumber
 
\dot H_1+ 3H_1\bar H & =\frac12(\rho-p),\\
 
\nonumber
 
\dot H_2+ 3H_2\bar H & =\frac12(\rho-p),\\
 
\nonumber
 
\dot H_3+ 3H_3\bar H & =\frac12(\rho-p).
 
\end{align}
 
<!--<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;"></p>
 
  </div>
 
</div>--></div>
 
 
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 7'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Show that the mean of the three directional Hubble parameters $\bar H$ is related to the elementary volume of the BI Universe $V\equiv a_1a_2a_3$ as \[\bar H=\frac13\frac{\dot V}{V}.\]
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">\[\bar H=\frac13\frac{d}{dt}\ln(a_1a_2a_3)=\frac13\frac{d}{dt}\ln V=\frac13\frac{\dot V}{V}.\]</p>
 
  </div>
 
</div></div>
 
 
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 8'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Obtain the volume evolution equation of the BI model.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">Using the relation between volume $V$ and the mean Hubble parameter $\bar H$, obtained in the previous problem, one finds
 
\[\dot{\bar H}=\frac13\frac{\ddot V}{V}-3\bar H^2.\]
 
As
 
\[\dot{\bar H}+3\bar H^2=\frac12(\rho-p),\]
 
we obtain
 
\[\ddot V-\frac32(\rho-p)V=0.\]</p>
 
  </div>
 
</div></div>
 
 
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
'''Problem 9'''
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
Find the generic solution of the directional Hubble parameters.
 
<div class="NavFrame collapsed">
 
  <div class="NavHead">solution</div>
 
  <div style="width:100%;" class="NavContent">
 
    <p style="text-align: left;">The equations
 
\begin{align}
 
\nonumber
 
\dot H_1+ 3H_1\bar H & =\frac12(\rho-p),\\
 
\nonumber
 
\dot H_2+ 3H_2\bar H & =\frac12(\rho-p),\\
 
\nonumber
 
\dot H_3+ 3H_3\bar H & =\frac12(\rho-p),
 
\end{align}
 
allow us to write the generic solution of the directional Hubble parameters,
 
\[H_i(t)=\frac1{\mu(t)}\left[K_i+\frac12\int\mu(t)(\rho(t)-p(t))dt\right],\quad i=1,2,3,\]
 
where $K_i$s are the integration constants. The integration factor $\mu$ is defined as,
 
\[\mu(t)=\exp\left(3\int\bar H(t)dt\right).\]
 
As can be seen, the initial values (integration constants) determine the solution of each directional Hubble parameter. These values are the origin of the anisotropy. Note that the generic solution of the directional Hubble parameters is incomplete. To obtain exact solutions of the Hubble parameters and therefore the Einstein equations, one has to know the state equation for the component which fills the Universe.</p>
 
  </div>
 
</div></div>
 
 
  
 
==Radiation dominated BI model ==
 
==Radiation dominated BI model ==

Revision as of 22:00, 18 June 2015




New from march 2015

New from march 2015


New from Dec 2014

New from Dec 2014


Exactly Integrable n-dimensional Universes

Exactly Integrable n-dimensional Universes


UNSORTED NEW Problems

The history of what happens in any chosen sample region is the same as the history of what happens everywhere. Therefore it seems very tempting to limit ourselves with the formulation of Cosmology for the single sample region. But any region is influenced by other regions near and far. If we are to pay undivided attention to a single region, ignoring all other regions, we must in some way allow for their influence. E. Harrison in his book Cosmology, Cambridge University Press, 1981 suggests a simple model to realize this idea. The model has acquired the name of "Cosmic box" and it consists in the following.

Imaginary partitions, comoving and perfectly reflecting, are used to divide the Universe into numerous separate cells. Each cell encloses a representative sample and is sufficiently large to contain galaxies and clusters of galaxies. Each cell is larger than the largest scale of irregularity in the Universe, and the contents of all cells are in identical states. A partitioned Universe behaves exactly as a Universe without partitions. We assume that the partitions have no mass and hence their insertion cannot alter the dynamical behavior of the Universe. The contents of all cells are in similar states, and in the same state as when there were no partitions. Light rays that normally come from very distant galaxies come instead from local galaxies of long ago and travel similar distances by multiple re?ections. What normally passes out of a region is reflected back and copies what normally enters a region.

Let us assume further that the comoving walls of the cosmic box move apart at a velocity given by the Hubble law. If the box is a cube with sides of length $L$, then opposite walls move apart at relative velocity $HL$.Let us assume that the size of the box $L$ is small compared to the Hubble radius $L_{H} $ , the walls have a recession velocity that is small compared to the velocity of light. Inside a relatively small cosmic box we use ordinary everyday physics and are thus able to determine easily the consequences of expansion. We can even use Newtonian mechanics to determine the expansion if we embed a spherical cosmic box in Euclidean space.


Problem 1

problem id:

As we have shown before (see Chapter 3): $p(t)\propto a(t)^{-1} $ , so all freely moving particles, including galaxies (when not bound in clusters), slowly lose their peculiar motion and ultimately become stationary in expanding space. Try to understand what happens by considering a moving particle inside an expanding cosmic box


Problem 2

problem id:

Show that at redshift $z=1$ , when the Universe is half its present size, the kinetic energy of a freely moving nonrelativistic particle is four times its present value, and the energy of a relativistic particle is twice its present value.


Problem 3

problem id:

Let the cosmic box is filled with non-relativistic gas. Find out how the gas temperature varies in the expanding cosmic box.


Problem 4

problem id:

Show that entropy of the cosmic box is conserved during its expansion.


Problem 5

problem id:

Consider a (cosmic) box of volume V, having perfectly reflecting walls and containing radiation of mass density $\rho $. The mass of the radiation in the box is $M=\rho V$ . We now weigh the box and find that its mass, because of the enclosed radiation, has increased not by M but by an amount 2M. Why?


Problem 6

problem id:

Show that the jerk parameter is \[j(t)=q+2q^{2} -\frac{\dot{q}}{H} \]


Problem 7

problem id:

We consider FLRW spatially flat Universe with the general Friedmann equations \[\begin{array}{l} {H^{2} =\frac{1}{3} \rho +f(t),} \\ {\frac{\ddot{a}}{a} =-\frac{1}{6} \left(\rho +3p\right)+g(t)} \end{array}\] Obtain the general conservation equation.


Problem 8

problem id:

Show that for extra driving terms in the form of the cosmological constant the general conservation equation (see previous problem) transforms in the standard conservation equation.


Problem 9

problem id:

Show that case $f(t)=g(t)=\Lambda /3$ corresponds to $\Lambda (t)CDM$ model.