Difference between revisions of "Non relativistic small perturbation theory"

From Universe in Problems
Jump to: navigation, search
Line 38: Line 38:
 
<div id="per2"></div>
 
<div id="per2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 2 ===
 
<p style= "color: #999;font-size: 11px">problem id: per2</p>
 
<p style= "color: #999;font-size: 11px">problem id: per2</p>
 
Obtain the equations for perturbations in linear approximation, assuming that unperturbed state is stationary gas. uniformly distributed in space.
 
Obtain the equations for perturbations in linear approximation, assuming that unperturbed state is stationary gas. uniformly distributed in space.
Line 96: Line 96:
 
<div id="per3"></div>
 
<div id="per3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 3 ===
 
<p style= "color: #999;font-size: 11px">problem id: per3</p>
 
<p style= "color: #999;font-size: 11px">problem id: per3</p>
 
Demonstrate, that perturbations depend exponentially on time if unperturbed solution is stationary.
 
Demonstrate, that perturbations depend exponentially on time if unperturbed solution is stationary.
Line 131: Line 131:
 
<div id="per4"></div>
 
<div id="per4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 4 ===
 
<p style= "color: #999;font-size: 11px">problem id: per4</p>
 
<p style= "color: #999;font-size: 11px">problem id: per4</p>
 
Consider time dependent adiabatic perturbations and find the characterictic scale of instability (so-called Jeans instability).
 
Consider time dependent adiabatic perturbations and find the characterictic scale of instability (so-called Jeans instability).
Line 163: Line 163:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 +
  
 
<div id="per5"></div>
 
<div id="per5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 5 ===
 
<p style= "color: #999;font-size: 11px">problem id: per5</p>
 
<p style= "color: #999;font-size: 11px">problem id: per5</p>
 
Using the results of previous problem, consider the cases of
 
Using the results of previous problem, consider the cases of
Line 220: Line 221:
 
<div id="per6"></div>
 
<div id="per6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 6 ===
 
<p style= "color: #999;font-size: 11px">problem id: per6</p>
 
<p style= "color: #999;font-size: 11px">problem id: per6</p>
 
Construct the equation for small relative fluctuations of density \[\delta  = \frac{\delta \rho }{\rho }\] in Newtonian approximation neglecting the entropy perturbations.
 
Construct the equation for small relative fluctuations of density \[\delta  = \frac{\delta \rho }{\rho }\] in Newtonian approximation neglecting the entropy perturbations.
Line 276: Line 277:
 
<div id="per7"></div>
 
<div id="per7"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 7 ===
 
<p style= "color: #999;font-size: 11px">problem id: per7</p>
 
<p style= "color: #999;font-size: 11px">problem id: per7</p>
 
Rewrite equation from previous problem in terms of Fourier components, eliminating the Lagrangian coordinates. Estimate the order of "physical" Jeans wavelength for matter dominated Universe.
 
Rewrite equation from previous problem in terms of Fourier components, eliminating the Lagrangian coordinates. Estimate the order of "physical" Jeans wavelength for matter dominated Universe.
Line 312: Line 313:
 
<div id="per8n"></div>
 
<div id="per8n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 8 ===
 
<p style= "color: #999;font-size: 11px">problem id: per8n</p>
 
<p style= "color: #999;font-size: 11px">problem id: per8n</p>
 
Obtain the dependence of fluctuations on time in flat Universe when<br/>
 
Obtain the dependence of fluctuations on time in flat Universe when<br/>
Line 366: Line 367:
 
<div id="per8"></div>
 
<div id="per8"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 9 ===
 
<p style= "color: #999;font-size: 11px">problem id: per8</p>
 
<p style= "color: #999;font-size: 11px">problem id: per8</p>
 
Assuming, that a particular solution to equation from prob. \ref{per6} has the form $\delta _1\left( t \right) \sim H\left( t \right)$, construct the general solution for $\delta (t)$. Consider the flat Universe filled with the substance with $p = w\rho.$
 
Assuming, that a particular solution to equation from prob. \ref{per6} has the form $\delta _1\left( t \right) \sim H\left( t \right)$, construct the general solution for $\delta (t)$. Consider the flat Universe filled with the substance with $p = w\rho.$
Line 407: Line 408:
 
<div id="per9"></div>
 
<div id="per9"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 10 ===
 
<p style= "color: #999;font-size: 11px">problem id: per9</p>
 
<p style= "color: #999;font-size: 11px">problem id: per9</p>
 
Demonstrate, that transverse or rotational mode in expanding Universe tends to decrease.
 
Demonstrate, that transverse or rotational mode in expanding Universe tends to decrease.

Revision as of 05:32, 11 February 2014


Perturbation theory in expanding Universe has a number of distinctive festures. Strictly speaking, this theory shloud be based within the framework of general relativity. However, if inhomogeneities are small one could neglect the effects of curvature and finite speed of interaction and use newtonian dynamics.

To describe the fluctuations of density in this approximation we need the continuity equation $$ \frac{\partial \rho} {\partial t} + \nabla \cdot \left(\rho \vec v\right) = 0 $$ and Euler equation $$ \frac{\partial \vec v} {\partial t} + \left( \vec v\nabla \right)\vec v + \frac{1} {\rho }\nabla P + \nabla \Phi = 0, $$ where Newtonian gravitational potential satisfies the Laplace equation $$ \Delta \Phi = 4\pi G\rho. $$


Problem 1

problem id: per1

Express the deviation of expansion rate from Hubble law in terms of physical and comoving coordinates.


Problem 2

problem id: per2

Obtain the equations for perturbations in linear approximation, assuming that unperturbed state is stationary gas. uniformly distributed in space.


Problem 3

problem id: per3

Demonstrate, that perturbations depend exponentially on time if unperturbed solution is stationary.


Problem 4

problem id: per4

Consider time dependent adiabatic perturbations and find the characterictic scale of instability (so-called Jeans instability).


Problem 5

problem id: per5

Using the results of previous problem, consider the cases of

  • long--wave $\lambda > \lambda _J$ and
  • short--wave $\lambda < \lambda _J$

perturbations. Cosider also the limiting case of short waves ($\lambda \ll \lambda _J$).


Problem 6

problem id: per6

Construct the equation for small relative fluctuations of density \[\delta = \frac{\delta \rho }{\rho }\] in Newtonian approximation neglecting the entropy perturbations.


Problem 7

problem id: per7

Rewrite equation from previous problem in terms of Fourier components, eliminating the Lagrangian coordinates. Estimate the order of "physical" Jeans wavelength for matter dominated Universe.


Problem 8

problem id: per8n

Obtain the dependence of fluctuations on time in flat Universe when
a) matter,
b) radition
is dominating.


Problem 9

problem id: per8

Assuming, that a particular solution to equation from prob. \ref{per6} has the form $\delta _1\left( t \right) \sim H\left( t \right)$, construct the general solution for $\delta (t)$. Consider the flat Universe filled with the substance with $p = w\rho.$


Problem 10

problem id: per9

Demonstrate, that transverse or rotational mode in expanding Universe tends to decrease.