Difference between revisions of "Particles' motion in general black hole spacetimes"

From Universe in Problems
Jump to: navigation, search
(General Black Holes)
 
 
(3 intermediate revisions by the same user not shown)
Line 30: Line 30:
 
Let us consider a particle moving with the four-velocity $U^{\mu }$. The
 
Let us consider a particle moving with the four-velocity $U^{\mu }$. The
 
interval $ds^{2}$ between two close events is defined in terms of
 
interval $ds^{2}$ between two close events is defined in terms of
differentials of coordinates,%
+
differentials of coordinates,
 
\begin{equation}
 
\begin{equation}
 
ds^{2}=g_{\mu \nu }dx^{\mu }dx^{\nu }.
 
ds^{2}=g_{\mu \nu }dx^{\mu }dx^{\nu }.
Line 47: Line 47:
 
\begin{equation}
 
\begin{equation}
 
d\tau _{obs}=-dx^{\mu }U_{\mu }.\label{tau}
 
d\tau _{obs}=-dx^{\mu }U_{\mu }.\label{tau}
\end{equation}%
+
\end{equation}
 
Then, locally, two events are simultaneous when
 
Then, locally, two events are simultaneous when
 
\begin{equation}
 
\begin{equation}
Line 81: Line 81:
 
\begin{equation}
 
\begin{equation}
 
w^{2}=\left( \frac{dl}{d\tau _{obs}}\right) ^{2}.
 
w^{2}=\left( \frac{dl}{d\tau _{obs}}\right) ^{2}.
\end{equation}%
+
\end{equation}
 
Then, it follows from (\ref{dl}), (\ref{ds}) that
 
Then, it follows from (\ref{dl}), (\ref{ds}) that
 
\begin{equation}
 
\begin{equation}
Line 126: Line 126:
 
=\frac{dt-v_{i}dx^{i}}{\sqrt{1-v^{2}}}
 
=\frac{dt-v_{i}dx^{i}}{\sqrt{1-v^{2}}}
 
=dt\sqrt{1-v^{2}},
 
=dt\sqrt{1-v^{2}},
\end{equation}%
+
\end{equation}
 
which coincides with the standard Lorentz transformation. Here, $dt$ and $dx^{i} $ are the time and coordinate differences between close events
 
which coincides with the standard Lorentz transformation. Here, $dt$ and $dx^{i} $ are the time and coordinate differences between close events
 
measured in the laboratory frame. The quantities with primes refer to the comoving frame. Then, $\tau _{obs}=t^{\prime }$ has the meaning of  
 
measured in the laboratory frame. The quantities with primes refer to the comoving frame. Then, $\tau _{obs}=t^{\prime }$ has the meaning of  
Line 140: Line 140:
 
$x^{i}=const$ ($i=1,2,3$). Find $h_{\mu \nu }$, $d\tau _{obs}$, the
 
$x^{i}=const$ ($i=1,2,3$). Find $h_{\mu \nu }$, $d\tau _{obs}$, the
 
condition of simultaneity and $dl^{2}$ for this case. Show that the
 
condition of simultaneity and $dl^{2}$ for this case. Show that the
corresponding formulas are equivalent to eqs. (84.6), (84.7) of \cite{lan},
+
corresponding formulas are equivalent to eqs. (84.6), (84.7) of Landau and Lifshitz [1],
 
where they are derived in a different way.
 
where they are derived in a different way.
  
Line 151: Line 151:
 
\begin{equation}
 
\begin{equation}
 
U^{\mu }=(U^{0},0,0,0).
 
U^{\mu }=(U^{0},0,0,0).
\end{equation}%
+
\end{equation}
 
From the normalization condition one finds
 
From the normalization condition one finds
 
\begin{equation}
 
\begin{equation}
 
g_{00}\left( U^{0}\right) ^{2}=-1,
 
g_{00}\left( U^{0}\right) ^{2}=-1,
\end{equation}%
+
\end{equation}
 
whence
 
whence
 
\begin{equation}
 
\begin{equation}
Line 165: Line 165:
 
U_{0}=-\sqrt{-g_{00}},\qquad U_{i}=\frac{g_{i 0}}{\sqrt{-g_{00}}}.
 
U_{0}=-\sqrt{-g_{00}},\qquad U_{i}=\frac{g_{i 0}}{\sqrt{-g_{00}}}.
 
\label{uco}
 
\label{uco}
\end{equation}%
+
\end{equation}
 
By substitution into (\ref{h}), one finds
 
By substitution into (\ref{h}), one finds
 
\begin{align}
 
\begin{align}
Line 171: Line 171:
 
h_{ij}&=g_{ij}-\frac{g_{0i}g_{0j}}{g_{00}},  \label{hi}
 
h_{ij}&=g_{ij}-\frac{g_{0i}g_{0j}}{g_{00}},  \label{hi}
 
\end{align}
 
\end{align}
which coincides (up to the choice of the overall signature) with the spatial metric $\gamma_{ij}$ as defined in eq. (84.7) of \cite{lan}. Then, $dl^{2}=h_{ij}dx^{i}dx^{j}$ turns into eq. (84.6).
+
which coincides (up to the choice of the overall signature) with the spatial metric $\gamma_{ij}$ as defined in eq. (84.7) of [1]. Then, $dl^{2}=h_{ij}dx^{i}dx^{j}$ turns into eq. (84.6).
  
 
The condition of simultaneity (\ref{sim}) with (\ref{uco}) taken into account reads
 
The condition of simultaneity (\ref{sim}) with (\ref{uco}) taken into account reads
 
\begin{equation}
 
\begin{equation}
 
dt=-dx^{i}\frac{g_{0i}}{g_{00}}
 
dt=-dx^{i}\frac{g_{0i}}{g_{00}}
\end{equation}%
+
\end{equation}
which coincides with eq. (84.14) of \cite{lan}.
+
which coincides with eq. (84.14) of [1].
 
   </p></div>
 
   </p></div>
 
</div>
 
</div>
 +
[1] Landau L.D., Lifshitz E.M. Vol. 2. The classical theory of fields, 4ed., Butterworth-Heinemann, 1994; ISBN 0-7506-2768-9.
  
  
Line 197: Line 198:
 
\begin{equation}
 
\begin{equation}
 
d\tau _{obs}=\sqrt{-g_{00}}\;dt
 
d\tau _{obs}=\sqrt{-g_{00}}\;dt
\end{equation}%
+
\end{equation}
which coincides with eq. 84.1 of \cite{lan}.
+
which coincides with eq. 84.1 of Landau and Lifshitz$^*$.</p>
 +
 
 +
<p style="text-align: left;">$^*$ Landau L.D., Lifshitz E.M. Vol. 2. The classical theory of fields. 4ed., Butterworth-Heinemann, 1994; ISBN 0-7506-2768-9.
 
   </p></div>
 
   </p></div>
 
</div>
 
</div>
Line 211: Line 214:
 
\begin{equation}
 
\begin{equation}
 
U_{\mu }=-N\delta _{\mu }^{0}=-N(1,0,0,0)\text{.}  \label{uz}
 
U_{\mu }=-N\delta _{\mu }^{0}=-N(1,0,0,0)\text{.}  \label{uz}
\end{equation}%
+
\end{equation}
We call it a fiducial observer (FidO) in accordance with \cite{mb}. This
+
We call it a fiducial observer (FidO) in accordance with [1]. This
notion is applied in \cite{mb} mainly to static or axially symmetric rotating
+
notion is applied in [1] mainly to static or axially symmetric rotating
 
black holes. In the latter case it is usually called the ZAMO (zero angular
 
black holes. In the latter case it is usually called the ZAMO (zero angular
 
momentum observer). We will use FidO in a more general context.  
 
momentum observer). We will use FidO in a more general context.  
  
 
Show that a FidO's world-line is orthogonal to hypersurfaces of constant time $t=const$.
 
Show that a FidO's world-line is orthogonal to hypersurfaces of constant time $t=const$.
 +
 +
[1] Black Holes: The Membrane Paradigm. Edited by Kip S. Thorne, Richard H. Price, Douglas A. Macdonald. Yale University Press New Haven and London, 1986; ISBN 978-030-003-769-2 .
  
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 240: Line 245:
 
     <p style="text-align: left;">
 
     <p style="text-align: left;">
  
By definition, $U_{i}=0$. Then, the normalization condition gives us%
+
By definition, $U_{i}=0$. Then, the normalization condition gives us
 
\begin{equation}
 
\begin{equation}
 
U^{\mu }=\frac{1}{N}(1,N^{i})  \label{zamo}
 
U^{\mu }=\frac{1}{N}(1,N^{i})  \label{zamo}
\end{equation}%
+
\end{equation}
 
with some $N^{i}$. It has the simple physical meaning of the velocity of the
 
with some $N^{i}$. It has the simple physical meaning of the velocity of the
 
observer with respect to the coordinate frame $\{t,x^{i}\}$ defined
 
observer with respect to the coordinate frame $\{t,x^{i}\}$ defined
Line 252: Line 257:
 
\end{equation}
 
\end{equation}
  
It follows from (\ref{tau}) that%
+
It follows from (\ref{tau}) that
 
\begin{equation}
 
\begin{equation}
 
d\tau _{obs}=Ndt .
 
d\tau _{obs}=Ndt .
\end{equation}%
+
\end{equation}
 
Using that
 
Using that
 
\begin{equation}
 
\begin{equation}
 
0=U_{i}=\frac{g_{i 0}}{N}+\frac{g_{ij}N^{j}}{N},
 
0=U_{i}=\frac{g_{i 0}}{N}+\frac{g_{ij}N^{j}}{N},
\end{equation}%
+
\end{equation}
 
we find
 
we find
 
\begin{equation}
 
\begin{equation}
Line 265: Line 270:
 
\end{equation}
 
\end{equation}
  
In a similar way,%
+
In a similar way,
 
\begin{equation}
 
\begin{equation}
 
-N=U_{0}=\frac{g_{00}}{N}+\frac{g_{0i}N^{i}}{N},
 
-N=U_{0}=\frac{g_{00}}{N}+\frac{g_{0i}N^{i}}{N},
\end{equation}%
+
\end{equation}
whence%
+
whence
 
\begin{equation}
 
\begin{equation}
 
g_{00}=-N^{2}+g_{0i}N^{i}N.
 
g_{00}=-N^{2}+g_{0i}N^{i}N.
Line 289: Line 294:
 
+g_{\phi \phi }(d\phi -\omega dt)^{2}
 
+g_{\phi \phi }(d\phi -\omega dt)^{2}
 
+g_{rr}dr^{2}+g_{\theta \theta }d\theta ^{2}.
 
+g_{rr}dr^{2}+g_{\theta \theta }d\theta ^{2}.
\end{equation}%
+
\end{equation}
 
we have
 
we have
 
\begin{align}
 
\begin{align}
Line 330: Line 335:
 
\begin{equation}
 
\begin{equation}
 
E-m\,u_{i}V^{i}=\frac{E_{rel}}{U^0},\label{e}
 
E-m\,u_{i}V^{i}=\frac{E_{rel}}{U^0},\label{e}
\end{equation}%
+
\end{equation}
 
where $V^{i}=U^i / U^0$ is the local observer's velocity in the given frame (\ref{vn}).
 
where $V^{i}=U^i / U^0$ is the local observer's velocity in the given frame (\ref{vn}).
 
   </p></div>
 
   </p></div>
Line 382: Line 387:
 
\begin{equation}
 
\begin{equation}
 
E_{(0)}=\gamma ( E-\mathbf{p}\cdot\mathbf{V}),
 
E_{(0)}=\gamma ( E-\mathbf{p}\cdot\mathbf{V}),
\end{equation}%
+
\end{equation}
 
This is the standard formula for energy transformation.
 
This is the standard formula for energy transformation.
 
   </p></div>
 
   </p></div>
Line 402: Line 407:
 
\begin{equation}
 
\begin{equation}
 
E=E_{rel.}\sqrt{-g_{00}}=\frac{m}{\sqrt{1-w^{2}}},
 
E=E_{rel.}\sqrt{-g_{00}}=\frac{m}{\sqrt{1-w^{2}}},
\end{equation}%
+
\end{equation}
which coincides with eq. (88.9) of \cite{lan}.
+
which coincides with eq. (88.9) of Landau and Lifshitz$^*$.</p>
 +
 
 +
<p style="text-align: left;">$^*$Landau L.D., Lifshitz E.M. Vol. 2. The classical theory of fields, 4ed., Butterworth-Heinemann, 1994; ISBN 0-7506-2768-9.
 
   </p></div>
 
   </p></div>
 
</div>
 
</div>
Line 457: Line 464:
 
\begin{equation}
 
\begin{equation}
 
E_{c.m.}^{2}=-P^{\mu }P_{\mu }.\label{cm}
 
E_{c.m.}^{2}=-P^{\mu }P_{\mu }.\label{cm}
\end{equation}%
+
\end{equation}
 
It is is the direct generalization of the corresponding formula of special relativity. Eq (\ref{cm}) implies
 
It is is the direct generalization of the corresponding formula of special relativity. Eq (\ref{cm}) implies
 
\begin{equation}
 
\begin{equation}
 
E_{c.m.}^{2}=m_{1}^{2}+m_{2}^{2}+2m_{1}m_{2}\gamma ,
 
E_{c.m.}^{2}=m_{1}^{2}+m_{2}^{2}+2m_{1}m_{2}\gamma ,
\end{equation}%
+
\end{equation}
 
where  
 
where  
 
\begin{equation}
 
\begin{equation}
Line 498: Line 505:
 
\begin{equation}
 
\begin{equation}
 
u_{1}^{\mu }=a_{1}U^{\mu }+b_1 n_{1}^{\mu},  \label{ab}
 
u_{1}^{\mu }=a_{1}U^{\mu }+b_1 n_{1}^{\mu},  \label{ab}
\end{equation}%
+
\end{equation}
 
where $n^{\mu }$ is a unit space-like vector orthogonal to $U^{\mu }$. It is easy to
 
where $n^{\mu }$ is a unit space-like vector orthogonal to $U^{\mu }$. It is easy to
find from (\ref{ab}) that%
+
find from (\ref{ab}) that
 
\begin{equation}
 
\begin{equation}
 
a_{1}=-u_{1}^{\mu }U_{\mu }=\gamma _{1},
 
a_{1}=-u_{1}^{\mu }U_{\mu }=\gamma _{1},
\end{equation}%
+
\end{equation}
and from the normalization conditions for $u_{1}^{\mu }$ and $U^{\mu }$ then we see that %$b_1$ as introduced in (\ref{ab}) is the velocity of particle 1 in the frame of particle 0:
+
and from the normalization conditions for $u_{1}^{\mu }$ and $U^{\mu }$ then we see that $b_1$ as introduced in (\ref{ab}) is the velocity of particle 1 in the frame of particle 0:
 
\begin{equation}
 
\begin{equation}
 
b_{1}^{2}=\frac{1}{\gamma _{1}^{2}-1 },
 
b_{1}^{2}=\frac{1}{\gamma _{1}^{2}-1 },
Line 539: Line 546:
 
In case particle 0 is at rest in the laboratory frame $U^{\mu }=(1,0)$, we have $n_{a}^{\mu}=(0,\vec{n}_{a})$, $a=1,2$, and  
 
In case particle 0 is at rest in the laboratory frame $U^{\mu }=(1,0)$, we have $n_{a}^{\mu}=(0,\vec{n}_{a})$, $a=1,2$, and  
 
\begin{equation}
 
\begin{equation}
u_{a}^{\mu }=\gamma _{a}(1,w_{a}\vec{n}_{a}),\qquad \varepsilon =(\vec{n}_{1}%
+
u_{a}^{\mu }=\gamma _{a}(1,w_{a}\vec{n}_{a}),\qquad \varepsilon =(\vec{n}_{1}
 
\vec{n}_{2}).
 
\vec{n}_{2}).
\end{equation}%
+
\end{equation}
Then, eqs. (\ref{ga}), (\ref{gw}) turn into those listed in problem 1.3 of \cite{li}.
+
Then, eqs. (\ref{ga}), (\ref{gw}) turn into those listed in problem 1.3 of Lightman et al $^*$.</p>
 +
 
 +
<p style="text-align: left;">$^*$ A. P. Lightman, W. H. Press, R. H. Price, and S. A. Teukolsky, Problem book in Relativity and Gravitation (Princeton University Press, Princeton, New Jersey, 1975); ISBN 069-108-160-3.  
 
   </p></div>
 
   </p></div>
 
</div>
 
</div>
Line 557: Line 566:
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;">
 
     <p style="text-align: left;">
 
 
1) If $\gamma _{1}$ and $\gamma _{2}$ are finite, it follows from (\ref{ga})
 
1) If $\gamma _{1}$ and $\gamma _{2}$ are finite, it follows from (\ref{ga})
 
that $\gamma $ is also finite. It means that if $w_{1}$ and $w_{2}$ are
 
that $\gamma $ is also finite. It means that if $w_{1}$ and $w_{2}$ are
 
finite, the relative velocity $w$ of particles 1 and 2 is also finite (in
 
finite, the relative velocity $w$ of particles 1 and 2 is also finite (in
the sense that it is separated from $c$).
+
the sense that it is separated from $c$).</p>
  
 +
<p style="text-align: left;">
 
2) Let $\gamma _{1}\rightarrow \infty $ but $\gamma _{2}$ remain finite.
 
2) Let $\gamma _{1}\rightarrow \infty $ but $\gamma _{2}$ remain finite.
Then,%
+
Then,
 
\begin{equation}
 
\begin{equation}
 
\gamma \approx \gamma _{1}\big( \gamma _{2}-\varepsilon \sqrt{\gamma _{2}^{2}-1}\;\big)
 
\gamma \approx \gamma _{1}\big( \gamma _{2}-\varepsilon \sqrt{\gamma _{2}^{2}-1}\;\big)
\end{equation}%
+
\end{equation}
 
grows unbound irrespective of $\varepsilon $. It means that the relative
 
grows unbound irrespective of $\varepsilon $. It means that the relative
 
velocity of particles, one of which moves with some finite speed and the
 
velocity of particles, one of which moves with some finite speed and the
 
other one almost with the speed of light is always close to the speed of
 
other one almost with the speed of light is always close to the speed of
light.
+
light.</p>
  
3) Let $\gamma _{1}\rightarrow \infty $, $\gamma _{2}\rightarrow \infty $.
+
<p style="text-align: left;">
 +
3) Let $\gamma _{1}\rightarrow \infty $, $\gamma _{2}\rightarrow \infty $.</p>
  
 +
<p style="text-align: left;">
 
3a) If $\varepsilon \neq +1$,
 
3a) If $\varepsilon \neq +1$,
 
\begin{equation}
 
\begin{equation}
 
\gamma \approx \gamma _{1}\gamma _{2}(1-\varepsilon )\rightarrow \infty ,
 
\gamma \approx \gamma _{1}\gamma _{2}(1-\varepsilon )\rightarrow \infty ,
 
\qquad w\rightarrow 1.
 
\qquad w\rightarrow 1.
\end{equation}
+
\end{equation}</p>
  
 +
<p style="text-align: left;">
 
3b) Let $\varepsilon =+1$. Then  
 
3b) Let $\varepsilon =+1$. Then  
 
\begin{equation}
 
\begin{equation}
\gamma \approx \frac{1}{2} \Big(\frac{\gamma _{1}}{\gamma _{2}} +\frac{%
+
\gamma \approx \frac{1}{2} \Big(\frac{\gamma _{1}}{\gamma _{2}} +\frac{\gamma _{2}}{\gamma _{1}}\Big).
\gamma _{2}}{\gamma _{1}}\Big).
+
 
\end{equation}
 
\end{equation}
  
Line 619: Line 630:
 
     <p style="text-align: left;">
 
     <p style="text-align: left;">
  
In special relativity,%
+
In special relativity,
 
\begin{equation}
 
\begin{equation}
 
u^{\mu }=\frac{dx^{\mu }}{ds}
 
u^{\mu }=\frac{dx^{\mu }}{ds}
 
=\gamma (1,v^{i}),\qquad
 
=\gamma (1,v^{i}),\qquad
 
\gamma =\frac{1}{\sqrt{1-v^{2}}}.
 
\gamma =\frac{1}{\sqrt{1-v^{2}}}.
\end{equation}%
+
\end{equation}
 
Thus $v^{i}=u^{i}\sqrt{1-v^{2}}$, and using (\ref{sw}), we get
 
Thus $v^{i}=u^{i}\sqrt{1-v^{2}}$, and using (\ref{sw}), we get
 
\begin{equation}
 
\begin{equation}
Line 637: Line 648:
 
\begin{equation}
 
\begin{equation}
 
v^{(i)}=\frac{h_{\mu }^{(i)}dx^{\mu}}{-h^{\mu}_{(0)}dx_{\mu }}.
 
v^{(i)}=\frac{h_{\mu }^{(i)}dx^{\mu}}{-h^{\mu}_{(0)}dx_{\mu }}.
\end{equation}%
+
\end{equation}
 
It can be rewritten as
 
It can be rewritten as
 
\begin{equation}
 
\begin{equation}
Line 674: Line 685:
 
\begin{equation}
 
\begin{equation}
 
\nu _{0}-k_{i}V^{i}=\frac{\nu }{U^{0}},  \label{nu}
 
\nu _{0}-k_{i}V^{i}=\frac{\nu }{U^{0}},  \label{nu}
\end{equation}%
+
\end{equation}
 
where $\nu =-k_{\mu }U^{\mu }$, and $U^{\mu }$ is the velocity of the
 
where $\nu =-k_{\mu }U^{\mu }$, and $U^{\mu }$ is the velocity of the
 
observer.
 
observer.
Line 723: Line 734:
 
     <p style="text-align: left;">
 
     <p style="text-align: left;">
  
Eq. (\ref{nu}) reads in this case%
+
Eq. (\ref{nu}) reads in this case
 
\begin{equation}
 
\begin{equation}
 
\nu _{0}-\Omega L=\frac{\nu }{U^{0}}\text{,}
 
\nu _{0}-\Omega L=\frac{\nu }{U^{0}}\text{,}
\end{equation}%
+
\end{equation}
where $U^{0}$ obeys the normalization condition%
+
where $U^{0}$ obeys the normalization condition
 
\begin{equation}
 
\begin{equation}
 
Y\equiv g_{00}+2g_{0\phi }\Omega +g_{\phi \phi }\Omega ^{2}=-\frac{1}{\left(
 
Y\equiv g_{00}+2g_{0\phi }\Omega +g_{\phi \phi }\Omega ^{2}=-\frac{1}{\left(
Line 733: Line 744:
 
\end{equation}
 
\end{equation}
  
It can be rewritten in the form%
+
It can be rewritten in the form
 
\begin{align}
 
\begin{align}
 
Y=&g_{\phi \phi }(\Omega ^{2}-2\omega \Omega +\frac{g_{00}}{g_{\phi \phi }})
 
Y=&g_{\phi \phi }(\Omega ^{2}-2\omega \Omega +\frac{g_{00}}{g_{\phi \phi }})
Line 739: Line 750:
 
&\Omega _{\pm }=\omega \pm \frac{N}{\sqrt{g_{\phi \phi }}},
 
&\Omega _{\pm }=\omega \pm \frac{N}{\sqrt{g_{\phi \phi }}},
 
\end{align}
 
\end{align}
Then,%
+
Then,
 
\begin{equation}
 
\begin{equation}
 
\nu _{0}-\Omega L=\nu \sqrt{g_{\phi \phi }(\Omega _{+}-\Omega )(\Omega
 
\nu _{0}-\Omega L=\nu \sqrt{g_{\phi \phi }(\Omega _{+}-\Omega )(\Omega
Line 745: Line 756:
 
\end{equation}
 
\end{equation}
  
When $g_{00}\rightarrow 0$, $\Omega _{-}\approx \frac{g_{00}}{2\omega }%
+
When $g_{00}\rightarrow 0$, $\Omega _{-}\approx \frac{g_{00}}{2\omega }
 
\rightarrow 0$.
 
\rightarrow 0$.
  
Line 769: Line 780:
 
\begin{equation}
 
\begin{equation}
 
\left( E_{1}\right) _{c.m.}=m_{1}\gamma (1,CM)  \label{e1}
 
\left( E_{1}\right) _{c.m.}=m_{1}\gamma (1,CM)  \label{e1}
\end{equation}%
+
\end{equation}
where%
+
where
 
\begin{equation}
 
\begin{equation}
 
\gamma (1,CM)=-u_{1\mu }U_{c.m.}^{\mu }
 
\gamma (1,CM)=-u_{1\mu }U_{c.m.}^{\mu }
\end{equation}%
+
\end{equation}
 
is its Lorentz factor in the same frame, which has four-velocity
 
is its Lorentz factor in the same frame, which has four-velocity
 
\begin{equation}
 
\begin{equation}
Line 779: Line 790:
 
\end{equation}
 
\end{equation}
 
Here $P^\mu$ is the total momentum and $\mu \equiv E_{c.m.}$ is the energy in the center of
 
Here $P^\mu$ is the total momentum and $\mu \equiv E_{c.m.}$ is the energy in the center of
mass frame introduced in (\ref{cm})%problem 14
+
mass frame introduced in (\ref{cm})
 
\begin{align}
 
\begin{align}
 
P^{\mu }&=m_{1}u_{1}^{\mu }+m_{2}u_{2}^{\mu };\\
 
P^{\mu }&=m_{1}u_{1}^{\mu }+m_{2}u_{2}^{\mu };\\
 
\mu ^{2}&=m_{1}^{2}+m_{2}^{2}+2m_{1}m_{2}\gamma (1,2).\label{mu}
 
\mu ^{2}&=m_{1}^{2}+m_{2}^{2}+2m_{1}m_{2}\gamma (1,2).\label{mu}
 
\end{align}
 
\end{align}
%\begin{equation}
+
 
%\gamma (1,2)=-u_{1\mu }u_{2}^{\mu }.
+
%\end{equation}%
+
 
Then
 
Then
 
\begin{align}
 
\begin{align}
Line 800: Line 809:
 
\end{align}
 
\end{align}
  
It follows from (\ref{e1cm}), (\ref{e2cm}) that%
+
It follows from (\ref{e1cm}), (\ref{e2cm}) that
 
\begin{equation}
 
\begin{equation}
 
( E_{1}) _{c.m.}+( E_{2}) _{c.m.}=\mu ,
 
( E_{1}) _{c.m.}+( E_{2}) _{c.m.}=\mu ,
Line 817: Line 826:
 
&w(1,CM)\approx w\frac{m^{2}}{(m_{1}+m_{2})},
 
&w(1,CM)\approx w\frac{m^{2}}{(m_{1}+m_{2})},
 
\end{align}
 
\end{align}
which agrees with formulas of nonrelativistic mechanics -- see Ch. 3, Sec. 13 of \cite{lan}.
+
which agrees with formulas of nonrelativistic mechanics -- see Ch. 3, Sec. 13 of Landau and Lifshitz$^*$.</p>
 +
 
 +
<p style="text-align: left;">$^*$ Landau L.D., Lifshitz E.M. Vol. 2. The classical theory of fields, 4ed., Butterworth-Heinemann, 1994; ISBN 0-7506-2768-9.
 
   </p></div>
 
   </p></div>
 
</div>
 
</div>
Line 838: Line 849:
 
=\frac{m_{1}U_{1}^{0}+m_{2}U_{2}^{0}}{\mu }
 
=\frac{m_{1}U_{1}^{0}+m_{2}U_{2}^{0}}{\mu }
 
=\frac{\frac{m_{1}}{\alpha _{1}}+\frac{m_{2}}{\alpha _{2}}}{\mu },
 
=\frac{\frac{m_{1}}{\alpha _{1}}+\frac{m_{2}}{\alpha _{2}}}{\mu },
\end{equation}%
+
\end{equation}
whence%
+
whence
 
\begin{equation}
 
\begin{equation}
 
\alpha _{c.m.}=\frac{\mu \alpha _{1}\alpha _{2}}{m_{1}\alpha
 
\alpha _{c.m.}=\frac{\mu \alpha _{1}\alpha _{2}}{m_{1}\alpha
Line 867: Line 878:
 
\begin{equation}
 
\begin{equation}
 
E_{1}-mu_{1i}v_{2}^{i}=\alpha _{2}E_{rel},  \label{e2}
 
E_{1}-mu_{1i}v_{2}^{i}=\alpha _{2}E_{rel},  \label{e2}
\end{equation}%
+
\end{equation}
 
where $v^{i}$ is the velocity of particle 2 in the stationary frame, $\alpha _{2}=\frac{1}{U_{2}^{0}}$.
 
where $v^{i}$ is the velocity of particle 2 in the stationary frame, $\alpha _{2}=\frac{1}{U_{2}^{0}}$.
  
Line 873: Line 884:
 
\begin{equation}
 
\begin{equation}
 
(E_{1})_{c.m.}\mu =m_{1}^{2}+m_{2}E_{rel}(1,2),
 
(E_{1})_{c.m.}\mu =m_{1}^{2}+m_{2}E_{rel}(1,2),
\end{equation}%
+
\end{equation}
 
where $E_{rel}(1,2)=m_{1}\gamma (1,2)$, so in terms of $(E_1)_{c.m.}$ we get
 
where $E_{rel}(1,2)=m_{1}\gamma (1,2)$, so in terms of $(E_1)_{c.m.}$ we get
 
\begin{align}
 
\begin{align}
Line 893: Line 904:
 
\begin{equation}
 
\begin{equation}
 
E-\alpha _{c.m.}P_{i}U_{c.m.}^{i}=\alpha _{c.m.}\mu .
 
E-\alpha _{c.m.}P_{i}U_{c.m.}^{i}=\alpha _{c.m.}\mu .
\end{equation}%
+
\end{equation}
 
Taking into account that $\frac{\alpha _{c.m.}}{\mu }=\frac{1}{P^{0}}$, this is equivelent to
 
Taking into account that $\frac{\alpha _{c.m.}}{\mu }=\frac{1}{P^{0}}$, this is equivelent to
 
\begin{equation}
 
\begin{equation}
 
EP^{0}-P_{i}P^{i}=-P^{\mu }P_{\mu }=\mu^{2},
 
EP^{0}-P_{i}P^{i}=-P^{\mu }P_{\mu }=\mu^{2},
\end{equation}%
+
\end{equation}
 
as it should be.
 
as it should be.
 
   </p></div>
 
   </p></div>
Line 918: Line 929:
 
K^{\mu }=\left( k^{\mu }\right) _{1}+\left( k^{\mu }\right) _{2}  \label{K}
 
K^{\mu }=\left( k^{\mu }\right) _{1}+\left( k^{\mu }\right) _{2}  \label{K}
 
\end{equation}
 
\end{equation}
is \emph{time-like} (unless the two photons are collinear, but then they would not collide). Dividing by the energy $\mu$ in the center of mass frame
+
is ''time-like'' (unless the two photons are collinear, but then they would not collide). Dividing by the energy $\mu$ in the center of mass frame
 
\begin{equation}
 
\begin{equation}
 
\mu ^{2}=-K^{\mu }K_{\mu }=-2k_{1\mu }k^{2\mu },
 
\mu ^{2}=-K^{\mu }K_{\mu }=-2k_{1\mu }k^{2\mu },
Line 925: Line 936:
 
\begin{equation}
 
\begin{equation}
 
U_{c.m.}^{\mu }=\frac{K^{\mu }}{\mu }.
 
U_{c.m.}^{\mu }=\frac{K^{\mu }}{\mu }.
\end{equation}%
+
\end{equation}
 
There is no Lorentz factor or relative velocity for two photons.
 
There is no Lorentz factor or relative velocity for two photons.
  
Line 943: Line 954:
 
=-k_{1\,\mu}U_{c.m.}^{\mu }
 
=-k_{1\,\mu}U_{c.m.}^{\mu }
 
=-\frac{k_{1\,\mu }k_{2}^{\mu }}{\mu }=\frac{\mu }{2},
 
=-\frac{k_{1\,\mu }k_{2}^{\mu }}{\mu }=\frac{\mu }{2},
\end{equation}%
+
\end{equation}
 
as for photons $k_{i\,\mu}k_i^{\mu}=0$. This is quite natural, since for photons the energy is equal to the absolute value of the momentum,
 
as for photons $k_{i\,\mu}k_i^{\mu}=0$. This is quite natural, since for photons the energy is equal to the absolute value of the momentum,
 
so in the CM frame the energies of both photons should be equal.
 
so in the CM frame the energies of both photons should be equal.
Line 973: Line 984:
 
V^{i}=\frac{U^{i}}{U^{0}},\qquad  
 
V^{i}=\frac{U^{i}}{U^{0}},\qquad  
 
\alpha =\frac{1}{U^{0}},\label{obs}
 
\alpha =\frac{1}{U^{0}},\label{obs}
\end{equation}%
+
\end{equation}
 
the same as for the case of massive particle. The difference is only that for photons we
 
the same as for the case of massive particle. The difference is only that for photons we
cannot express $\nu _{loc}$ in terms of mass and velocity as $\frac{m}{\sqrt{1-w^{2}}}$.
+
cannot express $\nu _{loc}$ in terms of mass and velocity as $\frac{m}{\sqrt{1-w^{2}}}$.</p>
  
ZAMO frame%
+
<p style="text-align: left;">
 +
ZAMO frame
 
\begin{equation}
 
\begin{equation}
 
\nu _{\infty }-\omega L=N\nu _{loc}.
 
\nu _{\infty }-\omega L=N\nu _{loc}.

Latest revision as of 06:26, 2 May 2013

In this section we use the $(-+++)$ signature, Greek letters for spacetime indices and Latin letters for spatial indices.

Frames, time intervals and distances

In the next several problems we again consider the procedure of measuring time and space intervals by different observers, but in a different, more formal and powerful approach.

Problem 1

Let a particle move with the four-velocity $U^{\mu }$. It can be viewed as some observer carrying a frame attached to him. Locally, it defines the hypersurface orthogonal to it. Show that \begin{equation} h_{\mu \nu }=g_{\mu \nu }+U_{\mu }U_{\nu } \label{h} \end{equation} is (i) the projection operator onto this hypersurface, and at the same time (ii) the induced metric of the hypersurface. This means that (i) for any vector projected at this hypersurface by means of $h^\mu_\nu$, only the components orthogonal to $U^{\mu}$ survive, (ii) the repeated application of the projection operation leaves the vector within the hypersurface unchanged. In other words, $h_{\mu \nu}$ satisfies \begin{align} &h^{\mu}_{\nu}U^{\nu }=0 ; \label{1} \\ &h^{\mu}_{\nu }h^{\nu}_{\lambda}=h^{\mu }_{\lambda}. \label{2} \end{align}

Problem 2

Let us consider a particle moving with the four-velocity $U^{\mu }$. The interval $ds^{2}$ between two close events is defined in terms of differentials of coordinates, \begin{equation} ds^{2}=g_{\mu \nu }dx^{\mu }dx^{\nu }. \end{equation}

For given $dx^{\mu }$, what is the value of the proper time $d\tau _{obs}$ between the corresponding events measured by this observer? How can one define locally the notions of simultaneity and proper distance $dl$ for the observer in terms of its four-velocity and the corresponding projection operator $h^\mu_\nu$ ? How is the interval $ds^{2}$ related to $d\tau _{obs}$ and $dl$?


Problem 3

Let our observer measure the velocity of some other particle passing in its immediate vicinity. Relate the interval to $d\tau _{obs}$ and the particle's velocity $w$.


Problem 4

Analyze the formulas derived in the previous three problems applied to the case of flat spacetime (Minkovskii space) and compare them to the known formulas of special relativity.


Problem 5

Consider an observer being at rest with respect to a given coordinate frame: $x^{i}=const$ ($i=1,2,3$). Find $h_{\mu \nu }$, $d\tau _{obs}$, the condition of simultaneity and $dl^{2}$ for this case. Show that the corresponding formulas are equivalent to eqs. (84.6), (84.7) of Landau and Lifshitz [1], where they are derived in a different way.

[1] Landau L.D., Lifshitz E.M. Vol. 2. The classical theory of fields, 4ed., Butterworth-Heinemann, 1994; ISBN 0-7506-2768-9.


Problem 6

Consider two events at the same point of space but at different values of time. Find the relation between $dx^{\mu}$ and $d\tau _{obs}$ for such an observer.


Fiducial observers

Problem 7

Consider an observer with \begin{equation} U_{\mu }=-N\delta _{\mu }^{0}=-N(1,0,0,0)\text{.} \label{uz} \end{equation} We call it a fiducial observer (FidO) in accordance with [1]. This notion is applied in [1] mainly to static or axially symmetric rotating black holes. In the latter case it is usually called the ZAMO (zero angular momentum observer). We will use FidO in a more general context.

Show that a FidO's world-line is orthogonal to hypersurfaces of constant time $t=const$.

[1] Black Holes: The Membrane Paradigm. Edited by Kip S. Thorne, Richard H. Price, Douglas A. Macdonald. Yale University Press New Haven and London, 1986; ISBN 978-030-003-769-2 .


Problem 8

Find the explicit form of the metric coefficients in terms of the components of the FidO's four-velocity. Analyze the specific case of axially symmetric metric in coordinates $(t,\phi ,r,\theta )$ with $g_{0i}=g_{t\phi }\delta _{i}^{\phi }$.


Problem 9

Consider a stationary metric with the time-like Killing vector field $\xi^\mu =(1,0,0,0)$. Relate the energy $E$ of a particle with four-velocity $u^\mu$ as measured at infinity by a stationary observer to that measured by a local observer with 4-velocity $U^\mu$.


Problem 10

Express $E_{rel}$ and $E$ in terms of the relative velocity $w$ between a particle and the observer (i.e. velocity of the particle in the frame of the observer and vice versa).


Problem 11

Show that in the flat spacetime eq. (\ref{ep}) is reduced to the usual formula of the Lorentz transformation.


Problem 12

Find the expression for $E$ for the case of a static observer ($U^{i}=0$).


Problem 13

Find the expression for $E$ for the case of the ZAMO observer and, in particular, in case of axially symmetric metric.


Collision of particles: general relationships

Problem 14

Let two particles collide. Define the energy in the center of mass (CM) frame $E_{c.m.}$ at the point of collision and relate it to $E_{rel}$ and the Lorentz factor of relative motion of the two particles.


Problem 15

Let us consider a collision of particles 1 and 2 viewed from the frame attached to some other particle 0. How are different Lorentz factors related to each other? Analyze the case when the laboratory frame coincides with that of particle 0.


Problem 16

When can $\gamma $ as a function of $\gamma _{1}$ and $\gamma _{2}$ grow unbounded? How can the answer be interpreted in terms of relative velocities?


Problem 17

A tetrad basis, or the orthonormal tetrad, is the set of four unit vectors $h_{(a)}^\mu$ (subscripts in parenthesis $a=0,1,2,3$ enumerate these vectors), of which one, $h_{(0)}^\mu$, is timelike, and three vectors $h_{(i)}^\mu$ ($i=1,2,3$) are spacelike, so that \begin{equation} g_{\mu\nu}h_{(a)}^\mu h_{(b)}^\nu =\eta_{ab},\qquad a,b=0,1,2,3. \end{equation} A vector's tetrad components are \begin{equation} u_{(a)}=u_\mu h_{(a)}^\mu,\qquad u^{(b)}=\eta^{ab}u_{(b)}. \end{equation}

Define the local three-velocities with the help of the tetrad basis attached to the observer, which would generalize the corresponding formulas of special relativity.


Problem 18

Derive the analogues of formulas (\ref{e}), (\ref{ep}) for massless particles (photons). Analyze the cases of static and ZAMO observers.


Problem 19

The ergosphere is a surface defined by equation $g_{00}=0$. Show that it is the surface of infinite redshift for an (almost) static observer.


Problem 20

Consider an observer orbiting with a constant angular velocity $\Omega $ in the equatorial plane of the axially symmetric back hole. Analyze what happens to redshift when the angular velocity approaches the minimum or maximum values $\Omega _{\pm }$.


Problem 21

Let two massive particle 1 and 2 collide. Express the energy of each particle in the centre of mass (CM) frame in terms of their relative Lorentz factor $\gamma (1,2)$. Analyze the limiting cases of ultra-relativistic $\gamma (1,2)\rightarrow \infty $ and non-relativistic $\gamma (1,2)\approx 1$ collisions.


Problem 22

For a stationary observer in a stationary space-time the quantity $\alpha =(U^0)^{-1}$ is the redshifting factor: if this observer emits a ptoton with frequency $\omega_{em}$, it is detected at infinity by another stationary observer with frequency $\omega_{det}=\alpha \omega_{em}$. For a generic observer this interpretation is invalid, however, $\alpha =ds/dt$ still determines the time dilation for this observer, and thus can still be called the same way. Express the redshifting factor of the center of mass frame $\alpha _{c.m.}$ through the redshifting factors of the colliding particles $\alpha_{1}$ and $\alpha_2$.


Problem 23

Relate the energy of a particle at infinity $E_{1}$, its energy at the point of collision in the C.M. frame $(E_{1})_{c.m.}$ and $\mu$.


Problem 24

Solve the same problem when both particles are massless (photons). Write down formulas for the ZAMO observer and for the C.M. frame.