Difference between revisions of "Phenomenology of interacting models"

From Universe in Problems
Jump to: navigation, search
 
Line 27: Line 27:
 
<div id="IDE_5"></div>
 
<div id="IDE_5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 2 ===
 
Using the effective state parameters obtained in the previous problem, analyze dynamics of dark matter and dark energy depending on sign of the rate of energy density exchange in  the dark sector.
 
Using the effective state parameters obtained in the previous problem, analyze dynamics of dark matter and dark energy depending on sign of the rate of energy density exchange in  the dark sector.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 41: Line 41:
 
<div id="IDE_6"></div>
 
<div id="IDE_6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 3 ===
 
Find the effective state  parameters $w_{(de)eff}$ and $w_{(dm)eff}$ for the case of the warm dark matter ($w_{dm}\ne0$) and analyze the features of dynamics in this case.
 
Find the effective state  parameters $w_{(de)eff}$ and $w_{(dm)eff}$ for the case of the warm dark matter ($w_{dm}\ne0$) and analyze the features of dynamics in this case.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 57: Line 57:
 
<div id="IDE_7"></div>
 
<div id="IDE_7"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 4 ===
 
Show that the quintessence coupled to DM with certain sign of the coupling constant behaves like a phantom uncoupled model, but without negative kinetic energy.
 
Show that the quintessence coupled to DM with certain sign of the coupling constant behaves like a phantom uncoupled model, but without negative kinetic energy.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 69: Line 69:
 
<div id="IDE_8"></div>
 
<div id="IDE_8"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 5 ===
 
In order to compare dynamics of a model with observational results it is useful to analyze all dynamic variables as functions of redshift rather than time. Obtain the corresponding transformation for the system of interacting dark components.
 
In order to compare dynamics of a model with observational results it is useful to analyze all dynamic variables as functions of redshift rather than time. Obtain the corresponding transformation for the system of interacting dark components.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 88: Line 88:
 
<div id="IDE_9_0"></div>
 
<div id="IDE_9_0"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 6 ===
 
Show that energy exchange between dark components leads to time-dependent effective potential energy term in the first Friedman equation. (after [http://arxiv.org/abs/astro-ph/0502034]).
 
Show that energy exchange between dark components leads to time-dependent effective potential energy term in the first Friedman equation. (after [http://arxiv.org/abs/astro-ph/0502034]).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 130: Line 130:
 
<div id="IDE_9"></div>
 
<div id="IDE_9"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 7 ===
 
Show that the system of interacting components can be treated as the uncoupled one due to introduction of the partial effective pressure of the dark components
 
Show that the system of interacting components can be treated as the uncoupled one due to introduction of the partial effective pressure of the dark components
 
     \[\Pi_{de}\equiv\frac{Q}{3H},\quad \Pi_{dm}\equiv-\frac{Q}{3H}.\]
 
     \[\Pi_{de}\equiv\frac{Q}{3H},\quad \Pi_{dm}\equiv-\frac{Q}{3H}.\]
Line 145: Line 145:
 
<div id="IDE_10"></div>
 
<div id="IDE_10"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 8 ===
 
Assume that the mass $m_{dm}$ of dark matter particles depends on a scalar field $\varphi$. Construct the model of interacting dark energy and dark  matter in this case.
 
Assume that the mass $m_{dm}$ of dark matter particles depends on a scalar field $\varphi$. Construct the model of interacting dark energy and dark  matter in this case.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 171: Line 171:
 
<div id="IDE_12n"></div>
 
<div id="IDE_12n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 9 ===
 
Assume that the mass $m_{dm}$ of DM particles depends exponentially on the DE scalar field $m=m_*e^{-\lambda\varphi}$. Find the interaction term $Q$ in this case.
 
Assume that the mass $m_{dm}$ of DM particles depends exponentially on the DE scalar field $m=m_*e^{-\lambda\varphi}$. Find the interaction term $Q$ in this case.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 184: Line 184:
 
<div id="IDE_11"></div>
 
<div id="IDE_11"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 10 ===
 
Find the equation of motion for the scalar field interacting with dark matter if its particles' mass depends on the scalar field.
 
Find the equation of motion for the scalar field interacting with dark matter if its particles' mass depends on the scalar field.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 197: Line 197:
 
<div id="IDE_12"></div>
 
<div id="IDE_12"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 11 ===
 
Make the transformation from the variables $(\rho_{de}, \rho_{dm})$ to
 
Make the transformation from the variables $(\rho_{de}, \rho_{dm})$ to
 
\[\left(r=\frac{\rho_{dm}}{\rho_{de}}, \rho = \rho_{dm} + \rho_{de}\right)\] for the system of interacting dark components.
 
\[\left(r=\frac{\rho_{dm}}{\rho_{de}}, \rho = \rho_{dm} + \rho_{de}\right)\] for the system of interacting dark components.
Line 214: Line 214:
 
<div id="IDE_13"></div>
 
<div id="IDE_13"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 12 ===
 
Generalize the result of previous problem to the case of warm dark matter.
 
Generalize the result of previous problem to the case of warm dark matter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 227: Line 227:
 
<div id="IDE_16n"></div>
 
<div id="IDE_16n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 13 ===
 
Calculate the derivatives $dr/dt$ and $dr/dH$ for the case of flat universe with the interaction $Q$.
 
Calculate the derivatives $dr/dt$ and $dr/dH$ for the case of flat universe with the interaction $Q$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 246: Line 246:
 
<div id="IDE_17n"></div>
 
<div id="IDE_17n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 14 ===
 
It was shown in the previous problem that
 
It was shown in the previous problem that
 
\[\dot r=r\left(\frac{\dot\rho_{dm}}{\rho_{dm}}-\frac{\dot\rho_{de}}{\rho_{de}}\right) = 3Hr \left(w_{de} +\frac{1+r}{\rho_{dm}}\frac Q{3H}\right)=(1+r)\left[3Hw_{de}\frac{r}{1+r}+\Gamma\right],\quad \Gamma\equiv\frac Q {\rho_{de}}.\] Exclude the interaction $Q$ and reformulate the equation in terms of $\rho_{de}$, $H$ and its derivatives.
 
\[\dot r=r\left(\frac{\dot\rho_{dm}}{\rho_{dm}}-\frac{\dot\rho_{de}}{\rho_{de}}\right) = 3Hr \left(w_{de} +\frac{1+r}{\rho_{dm}}\frac Q{3H}\right)=(1+r)\left[3Hw_{de}\frac{r}{1+r}+\Gamma\right],\quad \Gamma\equiv\frac Q {\rho_{de}}.\] Exclude the interaction $Q$ and reformulate the equation in terms of $\rho_{de}$, $H$ and its derivatives.
Line 275: Line 275:
 
<div id="IDE_18n"></div>
 
<div id="IDE_18n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 15 ===
 
Generalize the result, obtained in the previous problem, for the case of non-flat Universe [http://arxiv.org/abs/astro-ph/0606555]
 
Generalize the result, obtained in the previous problem, for the case of non-flat Universe [http://arxiv.org/abs/astro-ph/0606555]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 301: Line 301:
 
<div id="IDE_14"></div>
 
<div id="IDE_14"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 16 ===
 
Show that critical points in the system of equations obtained in problem \ref{IDE_12} exist only for the case of dark energy of the phantom type.
 
Show that critical points in the system of equations obtained in problem \ref{IDE_12} exist only for the case of dark energy of the phantom type.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 317: Line 317:
 
<div id="IDE_15"></div>
 
<div id="IDE_15"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 17 ===
 
Show that the result of previous problem holds also for warm dark matter.
 
Show that the result of previous problem holds also for warm dark matter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 333: Line 333:
 
<div id="IDE_16"></div>
 
<div id="IDE_16"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 18 ===
 
Show that existence of critical points in the system of equations obtained in problem \ref{IDE_12} requires a transfer from dark energy to dark matter.
 
Show that existence of critical points in the system of equations obtained in problem \ref{IDE_12} requires a transfer from dark energy to dark matter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 347: Line 347:
 
<div id="IDE_17"></div>
 
<div id="IDE_17"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 19 ===
 
Show that the result of previous problem holds also for warm dark matter.
 
Show that the result of previous problem holds also for warm dark matter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 362: Line 362:
 
<div id="IDE_18"></div>
 
<div id="IDE_18"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 20 ===
 
Assume that the ratio of the interacting dark components equals \[r\equiv\frac{\rho_{dm}}{\rho_{de}}\propto a^{-\xi}, \quad \xi\ge0.\] Analyze how the interaction $Q$ depends on $\xi$.
 
Assume that the ratio of the interacting dark components equals \[r\equiv\frac{\rho_{dm}}{\rho_{de}}\propto a^{-\xi}, \quad \xi\ge0.\] Analyze how the interaction $Q$ depends on $\xi$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 378: Line 378:
 
<div id="IDE_19"></div>
 
<div id="IDE_19"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 21 ===
 
Show that the choice
 
Show that the choice
 
\[r\equiv\frac{\rho_{dm}}{\rho_{de}}\propto a^{-\xi}, \quad (\xi\ge0)\] guarantees existence of an early matter-dominated epoch.
 
\[r\equiv\frac{\rho_{dm}}{\rho_{de}}\propto a^{-\xi}, \quad (\xi\ge0)\] guarantees existence of an early matter-dominated epoch.
Line 393: Line 393:
 
<div id="IDE_20"></div>
 
<div id="IDE_20"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 22 ===
 
Find the interaction $Q$ for the Universe with interacting dark energy and dark matter, assuming that ratio of their densities takes the form
 
Find the interaction $Q$ for the Universe with interacting dark energy and dark matter, assuming that ratio of their densities takes the form
 
     \[r\equiv\frac{\rho_{dm}}{\rho_{de}}=f(a),\] where $f(a)$ is an arbitrary differentiable function of the scale factor.
 
     \[r\equiv\frac{\rho_{dm}}{\rho_{de}}=f(a),\] where $f(a)$ is an arbitrary differentiable function of the scale factor.
Line 413: Line 413:
 
<div id="IDE_26n"></div>
 
<div id="IDE_26n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 23 ===
 
Let \[Q=\frac{\dot f(t)}{f(t}\rho_{dm}.\] Show that the sign of the deceleration parameter is defined by the ratio \[\frac{\dot f}{fH}.\]
 
Let \[Q=\frac{\dot f(t)}{f(t}\rho_{dm}.\] Show that the sign of the deceleration parameter is defined by the ratio \[\frac{\dot f}{fH}.\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 439: Line 439:
 
<div id="IDE_27n"></div>
 
<div id="IDE_27n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 24 ===
 
Show that in the model, considered in the previous problem, the transition from the accelerated expansion to the decelerated one can occur only due to time dependence of the interaction.
 
Show that in the model, considered in the previous problem, the transition from the accelerated expansion to the decelerated one can occur only due to time dependence of the interaction.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">

Latest revision as of 01:26, 8 November 2013





Problem 1

Find the effective state parameters $w_{(de)eff}$ and $w_{(dm)eff}$ that would allow one to treat the interacting dark components as non-interacting.


Problem 2

Using the effective state parameters obtained in the previous problem, analyze dynamics of dark matter and dark energy depending on sign of the rate of energy density exchange in the dark sector.


Problem 3

Find the effective state parameters $w_{(de)eff}$ and $w_{(dm)eff}$ for the case of the warm dark matter ($w_{dm}\ne0$) and analyze the features of dynamics in this case.


Problem 4

Show that the quintessence coupled to DM with certain sign of the coupling constant behaves like a phantom uncoupled model, but without negative kinetic energy.

Use the result of the previous problem. When $Q<0$ it is possible that $w_{(de)eff}<w_{de}$. This means that the coupled quintessence behaves like a phantom uncoupled model, but without negative kinetic energy.


Problem 5

In order to compare dynamics of a model with observational results it is useful to analyze all dynamic variables as functions of redshift rather than time. Obtain the corresponding transformation for the system of interacting dark components.


Problem 6

Show that energy exchange between dark components leads to time-dependent effective potential energy term in the first Friedman equation. (after [1]).


Problem 7

Show that the system of interacting components can be treated as the uncoupled one due to introduction of the partial effective pressure of the dark components

    \[\Pi_{de}\equiv\frac{Q}{3H},\quad \Pi_{dm}\equiv-\frac{Q}{3H}.\]


Problem 8

Assume that the mass $m_{dm}$ of dark matter particles depends on a scalar field $\varphi$. Construct the model of interacting dark energy and dark matter in this case.


Problem 9

Assume that the mass $m_{dm}$ of DM particles depends exponentially on the DE scalar field $m=m_*e^{-\lambda\varphi}$. Find the interaction term $Q$ in this case.


Problem 10

Find the equation of motion for the scalar field interacting with dark matter if its particles' mass depends on the scalar field.


Problem 11

Make the transformation from the variables $(\rho_{de}, \rho_{dm})$ to \[\left(r=\frac{\rho_{dm}}{\rho_{de}}, \rho = \rho_{dm} + \rho_{de}\right)\] for the system of interacting dark components.


Problem 12

Generalize the result of previous problem to the case of warm dark matter.


Problem 13

Calculate the derivatives $dr/dt$ and $dr/dH$ for the case of flat universe with the interaction $Q$.


Problem 14

It was shown in the previous problem that \[\dot r=r\left(\frac{\dot\rho_{dm}}{\rho_{dm}}-\frac{\dot\rho_{de}}{\rho_{de}}\right) = 3Hr \left(w_{de} +\frac{1+r}{\rho_{dm}}\frac Q{3H}\right)=(1+r)\left[3Hw_{de}\frac{r}{1+r}+\Gamma\right],\quad \Gamma\equiv\frac Q {\rho_{de}}.\] Exclude the interaction $Q$ and reformulate the equation in terms of $\rho_{de}$, $H$ and its derivatives.


Problem 15

Generalize the result, obtained in the previous problem, for the case of non-flat Universe [2]


Problem 16

Show that critical points in the system of equations obtained in problem \ref{IDE_12} exist only for the case of dark energy of the phantom type.


Problem 17

Show that the result of previous problem holds also for warm dark matter.


Problem 18

Show that existence of critical points in the system of equations obtained in problem \ref{IDE_12} requires a transfer from dark energy to dark matter.


Problem 19

Show that the result of previous problem holds also for warm dark matter.


Problem 20

Assume that the ratio of the interacting dark components equals \[r\equiv\frac{\rho_{dm}}{\rho_{de}}\propto a^{-\xi}, \quad \xi\ge0.\] Analyze how the interaction $Q$ depends on $\xi$.


Problem 21

Show that the choice \[r\equiv\frac{\rho_{dm}}{\rho_{de}}\propto a^{-\xi}, \quad (\xi\ge0)\] guarantees existence of an early matter-dominated epoch.


Problem 22

Find the interaction $Q$ for the Universe with interacting dark energy and dark matter, assuming that ratio of their densities takes the form

   \[r\equiv\frac{\rho_{dm}}{\rho_{de}}=f(a),\] where $f(a)$ is an arbitrary differentiable function of the scale factor.


Problem 23

Let \[Q=\frac{\dot f(t)}{f(t}\rho_{dm}.\] Show that the sign of the deceleration parameter is defined by the ratio \[\frac{\dot f}{fH}.\]


Problem 24

Show that in the model, considered in the previous problem, the transition from the accelerated expansion to the decelerated one can occur only due to time dependence of the interaction.