Difference between revisions of "Simple linear models"

From Universe in Problems
Jump to: navigation, search
(Problem 1)
 
Line 22: Line 22:
 
<div id="IDE_22"></div>
 
<div id="IDE_22"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 2 ===
 
Obtain the equation for the evolution of the DE  energy density for  $Q=\delta(a) H\rho_{dm}$.
 
Obtain the equation for the evolution of the DE  energy density for  $Q=\delta(a) H\rho_{dm}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 40: Line 40:
 
<div id="IDE_23"></div>
 
<div id="IDE_23"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
+
=== Problem 3 ===
=== Problem 1 ===
+
 
Find $\rho_{dm}$ and $\rho_{de}$ in the case  $Q=\delta H\rho_{dm}$, $\delta=const$, $w_{de}=const$.
 
Find $\rho_{dm}$ and $\rho_{de}$ in the case  $Q=\delta H\rho_{dm}$, $\delta=const$, $w_{de}=const$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 56: Line 55:
 
<div id="IDE_24"></div>
 
<div id="IDE_24"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 4 ===
 
As was shown above, interaction between dark matter and dark energy leads to non--conservation of matter, or equivalently, to scale dependence for the mass of particles that constitute the dark matter. Show that, within the framework of the model of previous problem ($Q=\delta H\rho_{dm}$, $\delta=const$, $w_{de}=const$) the relative change of particles mass per Hubble time equals to the interaction constant.
 
As was shown above, interaction between dark matter and dark energy leads to non--conservation of matter, or equivalently, to scale dependence for the mass of particles that constitute the dark matter. Show that, within the framework of the model of previous problem ($Q=\delta H\rho_{dm}$, $\delta=const$, $w_{de}=const$) the relative change of particles mass per Hubble time equals to the interaction constant.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 73: Line 72:
 
<div id="IDE_25"></div>
 
<div id="IDE_25"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 5 ===
 
Find $\rho_{dm}$ and $\rho_{de}$ in the case  $Q=\delta H\rho_{de}$, $\delta=const$, $w_{de}=const$.
 
Find $\rho_{dm}$ and $\rho_{de}$ in the case  $Q=\delta H\rho_{de}$, $\delta=const$, $w_{de}=const$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 86: Line 85:
 
<div id="IDE_26"></div>
 
<div id="IDE_26"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 6 ===
 
Find $\rho_{dm}$ and $\rho_{de}$ in the case  $Q=\delta(a) H\rho_{de}$, $\delta(a)=\beta_0a^\xi$, $w_{de}=const$.
 
Find $\rho_{dm}$ and $\rho_{de}$ in the case  $Q=\delta(a) H\rho_{de}$, $\delta(a)=\beta_0a^\xi$, $w_{de}=const$.
 
<br/>
 
<br/>
(after  \cite{1111.6743}.)
+
(after  [http://arxiv.org/abs/1111.6743])
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 104: Line 103:
 
<div id="IDE_27"></div>
 
<div id="IDE_27"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 7 ===
 
Let's  look at a more general linear model for the expansion of a Universe that contains two interacting fluids with the equations of state
 
Let's  look at a more general linear model for the expansion of a Universe that contains two interacting fluids with the equations of state
 
\[p_1 = (\gamma_1-1)\rho_1,\]
 
\[p_1 = (\gamma_1-1)\rho_1,\]
Line 111: Line 110:
 
\[\dot\rho_1+3H\gamma_1\rho_1 = -\beta H\rho_1 + \alpha H\rho_2,\]
 
\[\dot\rho_1+3H\gamma_1\rho_1 = -\beta H\rho_1 + \alpha H\rho_2,\]
 
\[\dot\rho_2+3H\gamma_2\rho_2 = \beta H\rho_1 - \alpha H\rho_2.\]
 
\[\dot\rho_2+3H\gamma_2\rho_2 = \beta H\rho_1 - \alpha H\rho_2.\]
Here $\alpha$ and $\beta$ are constants describing the energy exchanges between the two fluids. Obtain the equation for $H(t)$ and find its solutions (After \cite{9702029,0604063}).
+
Here $\alpha$ and $\beta$ are constants describing the energy exchanges between the two fluids. Obtain the equation for $H(t)$ and find its solutions (After [http://arxiv.org/abs/physics/9702029], [http://arxiv.org/abs/gr-qc/0604063]).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 132: Line 131:
 
<div id="IDE_28"></div>
 
<div id="IDE_28"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 8 ===
 
Show that the energy balance equations (modified conservation equations) for $Q\propto H$ do not depend on H.
 
Show that the energy balance equations (modified conservation equations) for $Q\propto H$ do not depend on H.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 146: Line 145:
 
<div id="IDE_36n"></div>
 
<div id="IDE_36n"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 9 ===
 
The Hubble parameter is present in the first Friedmann equation quadratically. This gives rise to a useful symmetry within a class of FLRW models. Because of this quadratic dependence, Friedmann's equation remains invariant under a transformation $H\to-H$ for the spatially flat case. This means it describes both expanding and contracting solutions. The transformation $H\to-H$ can be seen as a consequence of the change $a\to1/a$  of the scale factor of the FLRW metric. If, instead of just the first Friedmann equation, we want to make the whole system of Universe-describing equations invariant relative to this transformation, we must expand the set of values that undergo symmetry transformations. Then, when we refer to a duality transformation, we have in mind the following set of transformations
 
The Hubble parameter is present in the first Friedmann equation quadratically. This gives rise to a useful symmetry within a class of FLRW models. Because of this quadratic dependence, Friedmann's equation remains invariant under a transformation $H\to-H$ for the spatially flat case. This means it describes both expanding and contracting solutions. The transformation $H\to-H$ can be seen as a consequence of the change $a\to1/a$  of the scale factor of the FLRW metric. If, instead of just the first Friedmann equation, we want to make the whole system of Universe-describing equations invariant relative to this transformation, we must expand the set of values that undergo symmetry transformations. Then, when we refer to a duality transformation, we have in mind the following set of transformations
 
\[H\to\bar H=-H,\quad \rho\to\bar\rho=\rho,\quad p\to\bar p=-2\rho-p,\quad \gamma\equiv\frac{\rho+p}{\rho}\to\bar\gamma\equiv\frac{\bar\rho+\bar p}{\bar\rho}=-\gamma.\]
 
\[H\to\bar H=-H,\quad \rho\to\bar\rho=\rho,\quad p\to\bar p=-2\rho-p,\quad \gamma\equiv\frac{\rho+p}{\rho}\to\bar\gamma\equiv\frac{\bar\rho+\bar p}{\bar\rho}=-\gamma.\]
  
Generalize the duality transformation to the case of interacting components.(after \cite{0505096}.)
+
Generalize the duality transformation to the case of interacting components.(after [http://arxiv.org/abs/gr-qc/0505096].)
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>

Latest revision as of 10:36, 8 November 2013




Problem 1

Find the scale factor dependence for the dark matter density assuming that the interaction between the dark matter and the dark energy equals $Q=\delta(a) H\rho_{dm}$.


Problem 2

Obtain the equation for the evolution of the DE energy density for $Q=\delta(a) H\rho_{dm}$.


Problem 3

Find $\rho_{dm}$ and $\rho_{de}$ in the case $Q=\delta H\rho_{dm}$, $\delta=const$, $w_{de}=const$.


Problem 4

As was shown above, interaction between dark matter and dark energy leads to non--conservation of matter, or equivalently, to scale dependence for the mass of particles that constitute the dark matter. Show that, within the framework of the model of previous problem ($Q=\delta H\rho_{dm}$, $\delta=const$, $w_{de}=const$) the relative change of particles mass per Hubble time equals to the interaction constant.


Problem 5

Find $\rho_{dm}$ and $\rho_{de}$ in the case $Q=\delta H\rho_{de}$, $\delta=const$, $w_{de}=const$.


Problem 6

Find $\rho_{dm}$ and $\rho_{de}$ in the case $Q=\delta(a) H\rho_{de}$, $\delta(a)=\beta_0a^\xi$, $w_{de}=const$.
(after [1])


Problem 7

Let's look at a more general linear model for the expansion of a Universe that contains two interacting fluids with the equations of state \[p_1 = (\gamma_1-1)\rho_1,\] \[p_2 = (\gamma_2-1)\rho_2,\] and energy exchange \[\dot\rho_1+3H\gamma_1\rho_1 = -\beta H\rho_1 + \alpha H\rho_2,\] \[\dot\rho_2+3H\gamma_2\rho_2 = \beta H\rho_1 - \alpha H\rho_2.\] Here $\alpha$ and $\beta$ are constants describing the energy exchanges between the two fluids. Obtain the equation for $H(t)$ and find its solutions (After [2], [3]).


Problem 8

Show that the energy balance equations (modified conservation equations) for $Q\propto H$ do not depend on H.


Problem 9

The Hubble parameter is present in the first Friedmann equation quadratically. This gives rise to a useful symmetry within a class of FLRW models. Because of this quadratic dependence, Friedmann's equation remains invariant under a transformation $H\to-H$ for the spatially flat case. This means it describes both expanding and contracting solutions. The transformation $H\to-H$ can be seen as a consequence of the change $a\to1/a$ of the scale factor of the FLRW metric. If, instead of just the first Friedmann equation, we want to make the whole system of Universe-describing equations invariant relative to this transformation, we must expand the set of values that undergo symmetry transformations. Then, when we refer to a duality transformation, we have in mind the following set of transformations \[H\to\bar H=-H,\quad \rho\to\bar\rho=\rho,\quad p\to\bar p=-2\rho-p,\quad \gamma\equiv\frac{\rho+p}{\rho}\to\bar\gamma\equiv\frac{\bar\rho+\bar p}{\bar\rho}=-\gamma.\]

Generalize the duality transformation to the case of interacting components.(after [4].)