Difference between revisions of "Single Scalar Cosmology"

From Universe in Problems
Jump to: navigation, search
(Created page with "7 __NOTOC__")
 
Line 2: Line 2:
  
 
__NOTOC__
 
__NOTOC__
 +
 +
 +
The discovery of the Higgs particle has confirmed that scalar fields play a fundamental
 +
role in subatomic physics. Therefore they must also have been present in the early Universe and played a part
 +
in its development. About scalar fields on present cosmological scales nothing is known, but in view of the observational evidence for accelerated expansion it is quite well possible that they take part
 +
in shaping our Universe now and in the future. In this section we consider the evolution of a flat, isotropic and homogeneous Universe in the presence of a single cosmic
 +
scalar field. Neglecting ordinary matter and radiation, the evolution of such a Universe is described by two
 +
degrees of freedom, the homogeneous scalar field $\varphi(t)$ and the scale factor of the Universe $a(t)$. The
 +
relevant evolution equations are the Friedmann and Klein-Gordon equations,
 +
reading (in the units in which $c = \hbar = 8 \pi G = 1$)
 +
\[
 +
\frac{1}{2}\, \dot{\varphi}^2 + V = 3 H^2, \quad \ddot{\varphi} + 3 H \dot{\varphi} + V' = 0,
 +
\]
 +
where $V[\varphi]$ is the potential of the scalar fields, and $H = \dot{a}/a$ is the Hubble parameter.
 +
Furthermore, an overdot denotes a derivative w.r.t.\ time, whilst a prime denotes a derivative w.r.t.\ the
 +
scalar field $\varphi$.
 +
 +
----
 +
 +
<div id="SSC_0"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_0</p>
 +
Show that the Hubble parameter cannot increase with time in the single scalar cosmology.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Let the scalar field $\varphi(t)$ is a single-valued function of time, then
 +
it is possible to reparametrize the Hubble parameter in terms of $\varphi$:
 +
\[
 +
H(t) = H[\varphi(t)].
 +
\]
 +
Taking time derivatives in the Friedman equation
 +
\[
 +
\frac{1}{2}\, \dot{\varphi}^2 + V = 3 H^2,
 +
\]
 +
one arrives at the results:
 +
\[
 +
\dot{\varphi} ( \ddot{\varphi} + V' ) = 6 H \dot{H},\quad \dot{H} \equiv H' \dot{\varphi}.
 +
\]
 +
Taking into account the Klein Gordon equation
 +
\[
 +
\ddot{\varphi} + 3 H \dot{\varphi} + V' = 0,
 +
\]
 +
it follows, that for $\dot{\varphi} \neq 0$ and $H \neq 0$ one gets
 +
\[
 +
\dot{\varphi} = - 2 H', \quad \dot{H} = - \frac{1}{2}\, \dot{\varphi}^2 \leq 0.
 +
\]
 +
Thus the Hubble parameter is a semi-monotonically decreasing function of time.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 2 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_1</p>
 +
Obtain first-order differential equation for the Hubble parameter $H$ as function of $\varphi$ and find its stationary points.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Replacing the time derivatives in the Friedmann equation using the results of the previous problem, one finds
 +
\[
 +
2 H^{\prime\, 2} - 3 H^2 + V(\varphi) = 0.
 +
\]
 +
 +
There are two kinds of stationary points; a point where $\dot{\varphi} = H' = 0$ is an end point of the evolution if
 +
\[
 +
\ddot{\varphi} = 4 H' H'' = 0,
 +
\]
 +
which happens if $H''$ is finite. In contrast, if
 +
\[
 +
\ddot{\varphi} = 4 H' H'' \neq 0,
 +
\]
 +
$H''$ necessarily diverges in such a way as to make $\ddot{\varphi}$ finite: $H'' \propto 1/H'$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_2"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 3 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_2</p>
 +
Consider eternally oscillating scalar field of the form $\varphi(t) = \varphi_0 \cos \omega t$ and analyze stationary points in such a model.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">For such a scalar field to exist it is required that
 +
\[
 +
H' = - \frac{1}{2}\, \dot{\varphi} = \frac{\omega \varphi_0}{2} \sin \omega t = \frac{\omega}{2} \sqrt{\varphi_0^2 - \varphi^2}.
 +
\]
 +
There are infinitely many stationary points
 +
\[
 +
\omega t_n = n \pi, \quad \varphi(t_n) = (-1)^n \varphi_0,
 +
\]
 +
where $H' = 0$. Now
 +
\[
 +
H'' = - \frac{1}{2} \frac{\omega \varphi}{\sqrt{\varphi_0^2 - \varphi^2}},
 +
\]
 +
and therefore $H''$ diverges at all stationary points $t_n$, but in such a way that
 +
\[
 +
4 H' H'' = - \omega^2 \varphi = \ddot{\varphi}.
 +
\]
 +
Then all stationary points in the considered model are turning points.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_3"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 4 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_3</p>
 +
Obtain explicit solution for the Hubble parameter in the model considered in the previous problem.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">\begin{align}
 +
H & =  H_0 - \frac{1}{4} \omega \varphi_0^2 \arccos \left( \frac{\varphi}{\varphi_0} \right) +\frac{1}{4} \omega \varphi \sqrt{\varphi_0^2 - \varphi^2} \\
 +
& = H_0 - \frac{1}{4} \omega^2 \varphi_0^2 t + \frac{1}{8} \omega \varphi_0^2 \sin 2 \omega t.
 +
\end{align}</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_4"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_4</p>
 +
Obtain explicit time dependence for the scale factor in the model of problem [[#SSC_2]].
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The corresponding solution for the scale factor is
 +
\[
 +
a(t) = a(0) \exp\left\{H_0 t - \frac{1}{8} \omega^2 \varphi_0^2 t^2 + \frac{1}{16} \left( 1 - \cos 2 \omega t \right)\right\}.
 +
\]
 +
which is a gaussian, slightly modulated by an oscillating function of time (see figure).
 +
[[File:Osc phi.png|center|thumb|400px|Scalefactor $a(t)$ for an eternally oscillating scalar field.]]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_5"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 6 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_5</p>
 +
Reconstruct the scalar field potential $V(\varphi)$ needed to generate the model of problem [[#SSC_2]].
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The potential giving rise to this behavior reads
 +
\begin{align}
 +
V & = 3 H^2 - 2 H^{\prime\, 2} \\
 +
& = 3 \left( H_0 - \frac{1}{4}\, \omega \varphi_0^2 \arccos \left( \frac{\varphi}{\varphi_0} \right) + \frac{1}{4} \omega \varphi
 +
  \sqrt{ \varphi_0^2 - \varphi^2} \right)^2 - \frac{\omega^2}{2} \left( \varphi_0^2 - \varphi^2 \right).
 +
\end{align}
 +
Observe, that this potential keeps track of the number of oscillations the scalar field has performed through
 +
the arccos-function, so ultimately $V$ increases indefinitely as a function of time, whilst the volume of a
 +
representative domain of space decreases rapidly.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_6_00"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_6_00</p>
 +
Describe possible final states for the Universe governed by
 +
a single scalar field at large times.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">If $H$ becomes negative then the Universe inevitably collapses.If $H$ never becomes negative, it must tend to a vanishing or positive final minimum, which can be reached either in finite or infinite time. The universe then ends up in a Minkowski or in a de Sitter state. These conclusions are a consequence of the non-positivity of $\dot{H}$ (see problem [[#SSC_0]], which implies that a negative $H$ can never return to larger values at later times.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_6_0"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 8 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_6_0</p>
 +
Formulate conditions for existence of end points of evolution in terms of the potential $V(\varphi)$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">In order to establish the existence of end points or asymptotic end points of evolution at non-negative
 +
values of $H$, we first consider the locus of all stationary points, defined by
 +
\[
 +
\dot{\varphi} = - 2 H' = 0 \quad \Rightarrow \quad V = 3 H^2 \geq 0 .
 +
\]
 +
It follows that stationary points can occur only in the region of positive or vanishing potential.
 +
In particular this holds for end points, which therefore do not occur in a region of negative potential.
 +
Moreover, it is clear that a Minkowski final state occurs only at a stationary point where $V = 0$, whereas
 +
all stationary points with $V >  0$ correspond to de Sitter states. To correspond to an end point of the
 +
evolution, $H''$ must be finite at these stationary points to guarantee that $\ddot{\varphi} = 0$ as well.
 +
 +
From the results of the problem \ref{SSC_1} it follows that
 +
\[
 +
V' = 2 H' (3 H - 2 H''),
 +
\]
 +
and therefore $V' = 0$ if $H' = 0$ and $H$ and $H''$ are finite. As a result end points of
 +
the evolution necessarily occur at an extremum of $V$, but only if $V \geq 0$ there.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_6_1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 9 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_6_1</p>
 +
Consider a single scalar cosmology described by the quadratic potential
 +
\[
 +
V = v_0 + \frac{m^2}{2}\, \varphi^2.
 +
\] Describe all possible stationary points and final states of the Universe in this model.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">We distinguish the cases $v_0 > 0$, $v_0 = 0$ and $v_0 < 0$. The stationary points
 +
are represented graphically by the curves in the $\varphi$-$H$-plane in figure.
 +
 +
<gallery widths=400px heights=300px perrow=2 caption="Critical curves $H'[\varphi] = 0$ for quadratic potentials with $v_0 > 0$ (left), $v_0 = 0$ (middle) and $v_0 < 0$ (right).">
 +
File:Eps gt 0v2.png|a)
 +
File:Eps eq 0v2.png|b)
 +
File:Eps lt 0v2.png|c)
 +
</gallery>
 +
'''Critical curves $H'[\varphi] = 0$ for quadratic potentials with $v_0 > 0$ (a)), $v_0 = 0$ (b)) and $v_0 < 0$ (c)).
 +
'''
 +
<br/>
 +
 +
For $v_0 > 0$ there exists a stationary point for any value of $\varphi$, but the potential has a unique
 +
minimum at $\varphi = 0$, which is the only stationary point where $V' = 0$, and therefore the only end point.
 +
Indeed, once this point is reached $H$ can not decrease anymore and we have final state of de
 +
Sitter type.
 +
 +
For $v_0 = 0$ the critical curves become straight lines, crossing at the origin where $H = 0$ at
 +
$V = 0$. This is still a stationary point with $\ddot{\varphi} = 0$ representing a Minkoswki state, but as $V'$ is not defined there it is really to be interpreted as a limit of the previous case. There are no evolution curves flowing from the domain $H > 0$ to the domain $H < 0$.
 +
 +
For $v_0 < 0$ there are no stationary points in the region $\varphi^2 < 2 |v_0| /m^2$, and the solutions can cross into the domain of negative $H$ there.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_7"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
 +
=== Problem 10 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_7</p>
 +
Obtain actual solutions for the model of previous problem using the power series expansion
 +
\[
 +
H[\varphi] = h_0 + h_1 \varphi + h_2 \varphi^2 + h_3 \varphi^3 + ...
 +
\] Consider the cases of $v_0 > 0$ and $v_0 < 0$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Substitution into equation $2 H^{\prime\, 2} - 3 H^2 + V(\varphi) = 0
 +
$ then leads to the equalities
 +
\[
 +
3 h_0^2 - 2 h_1^2 = v_0, \quad h_1(3h_0 - 4 h_2) = 0, \quad 4h_1(h_1 - 4 h_3)
 +
+ \frac{8}{3}\, h_2 ( 3 h_0 - 4 h_2 ) = m^2, \quad ...,
 +
\]
 +
from which the solutions $H[\varphi]$ can be reconstructed (see figure below).
 +
 +
[[File:Epsgt0v2.png|center|thumb|400px|Solutions $H[\varphi]$ for quadratic potentials (problem [[#SSC_6_1]]) with $v_0 > 0$ (left), and $v_0 < 0$ (right).]]
 +
</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_8"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 11 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_8</p>
 +
Estimate main contribution to total expansion factor of the Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Using the results of previous problem, one can define the number of $e$-folds in some interval of time:
 +
\[
 +
N = \int_{t_1}^{t_2} dt H = - \int_{\varphi_1}^{\varphi_2} d\varphi\, \frac{H}{2H'} = - \frac{1}{2}\, \int_{\varphi_1}^{\varphi_2} d\varphi\,
 +
\frac{h_0 + h_1 \varphi + h_2 \varphi^2 + ...}{h_1 + 2 h_2 \varphi + 3 h_3 \varphi^2 + ...}.
 +
\]
 +
This number can get sizeable contributions only in regions where the slow-roll condition is satisfied:
 +
\[
 +
\varepsilon = - \frac{\dot{H}}{H^2} = \frac{2H^{\prime\, 2}}{H^2} < 1 \quad \Rightarrow \quad
 +
3H^2 - V < H^2.
 +
\]
 +
Thus we simultaneously have
 +
\[
 +
V < 3 H^2 \quad \mbox{and} \quad V > 2H^2 \quad \Leftrightarrow \quad
 +
0 \leq \frac{V}{3} < H^2 < \frac{V}{2}.
 +
\]
 +
In most cases this holds only for a relatively narrow range of field values.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_9_0"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 12 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_9_0</p>
 +
Explain difference between end points and turning points of the scalar field evolution.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">In both cases $\dot{\varphi} = 0$, but at end points in addition $\ddot{\varphi} = 0$, which can happen only at extrema of the
 +
potential $V[\varphi]$. However, if the end point occurs at a relative maximum or saddle point of the potential, this end
 +
point will be classically unstable. Indeed, the field can remain there for an indefinite period of time, but any slight
 +
change in the initial conditions will cause it to move on to lower values of the Hubble parameter. Nevertheless, such
 +
a period of temporary slow roll of the field creates the right conditions for a period of inflation.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_9"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 13 ===
 +
<p style= "color: #999;font-size: 11px">problem id: </p>
 +
Show that the exponentially decaying scalar field
 +
\[
 +
\varphi(t) = \varphi_0 e^{-\omega t}
 +
\]
 +
can give rise to unstable end points of the evolution.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The Hubble parameter and potential giving rise to this solution can be constructed following the same procedure as for the eternally oscillating field (see problem \ref{SSC_2}), with the result
 +
\[
 +
H = h + \frac{1}{4}\, \omega \varphi^2, \quad V[\varphi] = v_0 - \frac{\mu^2}{2}\, \varphi^2 + \frac{\lambda}{4}\, \varphi^4,
 +
\]
 +
where
 +
\[
 +
v_0 = 3 h^2, \quad
 +
\mu^2 = \omega^2 - 3 \omega h, \quad \lambda = \frac{3 \omega^2}{4}.
 +
\]
 +
Thus we obtain a quartic potential; for $\mu^2 > 0$ it has minima in which reflection symmetry is spontaneously
 +
broken. The exponential solution ends asymptotically at the unstable maximum of the potential where
 +
$\dot{\varphi} = \ddot{\varphi} = 0$. As such it represents an end point of the evolution, but a minimal change in the
 +
initial conditions for the scalar field will turn the end point into a reflection point (if it starts at lower $H$), or
 +
it will overshoot the maximum (if it starts at higher $H$). Thus the end point is unstable, but the exponential
 +
decay will still provide a good approximation to first part of the evolution of the universe for
 +
solutions $H[\varphi]$ coming close to the maximum of the potential (see figure below).
 +
 +
[[File:Epsgt0v2.png|center|thumb|400px|Critical curves of stationary points and solutions $H[\varphi]$ for a quartic potential with spontaneous symmetry breaking.]]
 +
</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_10"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 14 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_10</p>
 +
Analyze all possible final states in the model of previous problem.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The exponential scalar field leads to a behavior of the scale factor given by
 +
\[
 +
a(t) = a_0\, e^{ht + \frac{1}{8} \varphi^2_0\, (1 - e^{-2\omega t})}.
 +
\]
 +
Thus for $h > 0$ this epoch in the evolution of the Universe ends in an asymptotic de Sitter state with
 +
Hubble constant $h$. Afterwards, the scalar field will roll further down the potential; provided $3h \leq \omega \leq 6h$
 +
it will oscillate around the minimum until it comes to rest in another de Sitter or a Minkowski state, again depending
 +
on the value of $h$. In particular, for $\omega \geq 3h$ the model has a final de Sitter or Minkowski state in which
 +
$\dot{\varphi} = 0$ and
 +
\[
 +
\langle \varphi^2 \rangle = \frac{\mu^2}{\lambda} = \frac{4}{3} \left(1 - \frac{3h}{\omega} \right).
 +
\]
 +
In this final state the energy density is
 +
\[
 +
\langle V \rangle = v_0 - \frac{\mu^4}{4\lambda} = \frac{\omega}{3} ( 6h - \omega ).
 +
\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_11"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 15 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_11</p>
 +
Express initial energy density of the model of problem [[#SSC_9]] in terms of the $e$-folding number $N$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The energy density for the solution of problem [[#SSC_9]] is
 +
\[
 +
\rho_s(t) = \frac{1}{2}\, \dot{\varphi}^2 + V = 3 H^2 = 3 \left( h + \frac{1}{4}\, \omega\, \varphi_0^2\, e^{-2 \omega t} \right)^2.
 +
\]
 +
Now the solution for the scale factor
 +
\[
 +
a(t) = a_0\, e^{ht + \frac{1}{8} \varphi^2_0\, (1 - e^{-2\omega t})}.
 +
\]
 +
shows, that before reaching the first turning point
 +
at $\varphi = 0$ the scale factor increases by an additional number of $e$-folds given by
 +
\[
 +
N = \frac{1}{8}\, \varphi_0^2.
 +
\]
 +
Therefore the initial energy density at $t = 0$ can be written as
 +
\[
 +
\rho_s(0) = 3 ( h + 2N \omega )^2.
 +
\]
 +
If we take this initial energy density to equal the Planck density: $\rho_s(0) = 1$, this establishes a
 +
simple relation between $h$, $\omega$ and $N$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_12"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
 +
=== Problem 16 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_12</p>
 +
Estimate mass of the particles corresponding to the exponential scalar field considered in problem [[#SSC_9]].
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Taking the final energy density $\langle V \rangle$ (see problem [[#SSC_10]]) equal to the observed energy density of
 +
the Universe today:
 +
\[
 +
\langle V \rangle = 3 H_0^2 = 1.04 \times 10^{-120}
 +
\]
 +
in Planck units, being so close to zero, one can set to an extremely good approximation $\omega = 6h$,
 +
and
 +
\[
 +
3 h^2 ( 1 + 12 N )^2 = 1, \quad \mu^2 = 18 h^2, \quad \lambda = 27 h^2.
 +
\]
 +
The lower limit on $N$ for inflation as derived from the CMB observations is $N \geq 60$, which requires
 +
\begin{equation}
 +
h \leq 0.8 \times 10^{-3}.\label{h_estimate}
 +
\end{equation}
 +
Now expanding $\varphi$ around its vacuum expectation value
 +
\[
 +
\varphi = \frac{\mu}{\sqrt{\lambda}} + \chi,
 +
\]
 +
the potential becomes
 +
\[
 +
V = \frac{1}{2}\, m_{\chi}^2 \chi^2 + \frac{\alpha}{3}\, m_{\chi} \chi^3 + \frac{\lambda}{4}\, \chi^4,
 +
\]
 +
where
 +
\[
 +
m_{\chi} = 6h, \quad
 +
\alpha = 9h , \quad \lambda = 27 h^2.
 +
\]
 +
According to the estimate (\ref{h_estimate}) the upper limits on these parameters are
 +
\[
 +
m_{\chi} = 0.48 \times 10^{-2}, \quad \alpha = 0.72 \times 10^{-2}\approx1/137, \quad \lambda = 0.17 \times 10^{-4}.
 +
\]
 +
Converting to particle physics units, the upper limit on the mass is $m_{\chi} \leq 1.2 \times 10^{-16}$ GeV.
 +
This suggests that the inflaton could be associated with a GUT scalar of Brout-Englert-Higgs type.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
<div id="SSC_13"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
 +
=== Problem 17 ===
 +
<p style= "color: #999;font-size: 11px">problem id: SSC_13</p>
 +
'''(after Tiberiu Harko, arXiv:1310.7167)'''
 +
Calculate the deceleration parameter for flat Universe filled with the scalar field in form of quintessence.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">There are several ways to obtain the result:
 +
'''1)''' \[q=-\frac{\ddot a }{aH^2};\quad \frac{\ddot a}{a}=-\frac16(\rho+3p);\quad H^2=\frac13\rho;\]
 +
\[q=\frac{\dot\varphi^2-V}{\frac{\dot\varphi^2}2+V};\]
 +
'''2)''' \[q=\frac12\Omega_{tot}+\frac32\sum\limits_iw_i\Omega_i.\] For a flat single-component Universe one obtains
 +
\[q=\frac12+\frac32w=\frac12+\frac32\frac{\dot\varphi^2-2V}{\dot\varphi^2+2V}=\frac{\dot\varphi^2-V}{\frac{\dot\varphi^2}2+V};\]
 +
'''3)''' \[q=\frac{d}{dt}\frac 1 H-1=-\frac{\dot H}{H^2}-1=\frac{3H^2-V}{H^2}-1=\frac{2H^2-V}{H^2}=\frac{\dot\varphi^2-V}{\frac{\dot\varphi^2}2+V}\]
 +
</p>
 +
  </div>
 +
</div></div>

Revision as of 04:50, 20 December 2013



The discovery of the Higgs particle has confirmed that scalar fields play a fundamental role in subatomic physics. Therefore they must also have been present in the early Universe and played a part in its development. About scalar fields on present cosmological scales nothing is known, but in view of the observational evidence for accelerated expansion it is quite well possible that they take part in shaping our Universe now and in the future. In this section we consider the evolution of a flat, isotropic and homogeneous Universe in the presence of a single cosmic scalar field. Neglecting ordinary matter and radiation, the evolution of such a Universe is described by two degrees of freedom, the homogeneous scalar field $\varphi(t)$ and the scale factor of the Universe $a(t)$. The relevant evolution equations are the Friedmann and Klein-Gordon equations, reading (in the units in which $c = \hbar = 8 \pi G = 1$) \[ \frac{1}{2}\, \dot{\varphi}^2 + V = 3 H^2, \quad \ddot{\varphi} + 3 H \dot{\varphi} + V' = 0, \] where $V[\varphi]$ is the potential of the scalar fields, and $H = \dot{a}/a$ is the Hubble parameter. Furthermore, an overdot denotes a derivative w.r.t.\ time, whilst a prime denotes a derivative w.r.t.\ the scalar field $\varphi$.


Problem 1

problem id: SSC_0

Show that the Hubble parameter cannot increase with time in the single scalar cosmology.


Problem 2

problem id: SSC_1

Obtain first-order differential equation for the Hubble parameter $H$ as function of $\varphi$ and find its stationary points.


Problem 3

problem id: SSC_2

Consider eternally oscillating scalar field of the form $\varphi(t) = \varphi_0 \cos \omega t$ and analyze stationary points in such a model.


Problem 4

problem id: SSC_3

Obtain explicit solution for the Hubble parameter in the model considered in the previous problem.


Problem 5

problem id: SSC_4

Obtain explicit time dependence for the scale factor in the model of problem #SSC_2.


Problem 6

problem id: SSC_5

Reconstruct the scalar field potential $V(\varphi)$ needed to generate the model of problem #SSC_2.


Problem 7

problem id: SSC_6_00

Describe possible final states for the Universe governed by a single scalar field at large times.


Problem 8

problem id: SSC_6_0

Formulate conditions for existence of end points of evolution in terms of the potential $V(\varphi)$.


Problem 9

problem id: SSC_6_1

Consider a single scalar cosmology described by the quadratic potential \[ V = v_0 + \frac{m^2}{2}\, \varphi^2. \] Describe all possible stationary points and final states of the Universe in this model.


Problem 10

problem id: SSC_7

Obtain actual solutions for the model of previous problem using the power series expansion \[ H[\varphi] = h_0 + h_1 \varphi + h_2 \varphi^2 + h_3 \varphi^3 + ... \] Consider the cases of $v_0 > 0$ and $v_0 < 0$.


Problem 11

problem id: SSC_8

Estimate main contribution to total expansion factor of the Universe.


Problem 12

problem id: SSC_9_0

Explain difference between end points and turning points of the scalar field evolution.


Problem 13

problem id:

Show that the exponentially decaying scalar field \[ \varphi(t) = \varphi_0 e^{-\omega t} \] can give rise to unstable end points of the evolution.


Problem 14

problem id: SSC_10

Analyze all possible final states in the model of previous problem.


Problem 15

problem id: SSC_11

Express initial energy density of the model of problem #SSC_9 in terms of the $e$-folding number $N$.


Problem 16

problem id: SSC_12

Estimate mass of the particles corresponding to the exponential scalar field considered in problem #SSC_9.


Problem 17

problem id: SSC_13

(after Tiberiu Harko, arXiv:1310.7167) Calculate the deceleration parameter for flat Universe filled with the scalar field in form of quintessence.