Difference between revisions of "Single Scalar Cosmology"

From Universe in Problems
Jump to: navigation, search
(Problem 22)
Line 549: Line 549:
 
<div id="ES_2"></div>
 
<div id="ES_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 20 ===
+
=== Problem 19===
 
<p style= "color: #999;font-size: 11px">problem id: ES_2</p>
 
<p style= "color: #999;font-size: 11px">problem id: ES_2</p>
 
Obtain equation to determine the parameter $G$ as function of scale factor.
 
Obtain equation to determine the parameter $G$ as function of scale factor.
Line 566: Line 566:
 
<div id="ES_3"></div>
 
<div id="ES_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 21 ===
+
=== Problem 20===
 
<p style= "color: #999;font-size: 11px">problem id: ES_3</p>
 
<p style= "color: #999;font-size: 11px">problem id: ES_3</p>
 
Obtain the deceleration parameter $q$ in terms of the parameter $G$.
 
Obtain the deceleration parameter $q$ in terms of the parameter $G$.
Line 582: Line 582:
 
<div id="ES_4"></div>
 
<div id="ES_4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 22 ===
+
=== Problem 21===
 
<p style= "color: #999;font-size: 11px">problem id: ES_4</p>
 
<p style= "color: #999;font-size: 11px">problem id: ES_4</p>
 
Obtain solution of the equation (\ref{fin}) with
 
Obtain solution of the equation (\ref{fin}) with
Line 620: Line 620:
  
  
<!--
+
 
<div id=""></div>
+
<div id="ES_5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 22===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: ES_5</p>
 
+
Obtain explicit solution of the problem [[#ES_4]] in the case $\alpha _{0}=\pm \sqrt{2}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\begin{equation}
 +
t_{\pm }(G)-t_{0}^{\pm }=-\frac{e^{\mp \left( \sqrt{2}G+\sqrt{3}\phi
 +
_{0}\right) }}{\sqrt{3V_{0}}}\left[ 3\cosh G\pm 2\sqrt{2}\sinh G\right] .
 +
\end{equation}</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 635: Line 638:
  
  
<div id=""></div>
+
<div id="ES_6"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 23===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: ES_6</p>
 
+
Obtain explicit solution of the problem [[#ES_4]]
 +
in the case $\alpha _{0}=\pm \sqrt{3/2}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\begin{eqnarray}
 +
t_{\pm }(G)-t_{0}^{\pm }=\pm \frac{1}{24\sqrt{V_{0}}}\mathbf{e}^{\mp \left(
 +
\sqrt{6}G+\frac{3\phi _{0}}{2}\right) } \times
 +
  \nonumber\\
 +
\times \left[ \sqrt{2}+ 27\sqrt{2}\cosh
 +
(2G)\pm 22\sqrt{3}\sinh (2G)\right]
 +
\end{eqnarray}</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 649: Line 659:
  
  
<div id=""></div>
+
<div id="ES_7"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 24===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: ES_7</p>
 
+
Obtain explicit solution of the problem [[#ES_4]]
 +
in the case $\alpha _{0}=\pm 2/\sqrt{3}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\begin{eqnarray}
 +
t_{\pm }(G)-t_{0}^{\pm } =\frac{1}{396\sqrt{3V_{0}}}e^{\mp \left( 2\sqrt{3}
 +
G+\sqrt{2}\phi _{0}\right) }\Big\{ 45\cosh G\nonumber\\
 +
+1067\cosh (3G)\pm 8\sqrt{3}
 +
\left[ 3\sinh G+77\sinh (3G)\right] \Big\} .
 +
\end{eqnarray}</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 663: Line 679:
  
  
<div id=""></div>
+
<div id="ES_8"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 25===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: ES_8</p>
 
+
Obtain a particular solution of the problem [[#ES_4]]
 +
in the case $G(\phi)=G_{0}=\mathrm{constant}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\begin{equation}
 +
G_{0}=\mathrm{arccoth}\left( -\frac{1}{\alpha _{0}}\right) =\frac{1}{2}\ln
 +
\left| \frac{1-\alpha _{0}}{1+\alpha _{0}}\right| , 0<|\alpha_0|<1.
 +
\end{equation}
 +
\begin{equation}
 +
a(t)=a_{0}\left[ \pm \sqrt{3V_{0}}\alpha _{0}\sinh \left( G_{0}\right)
 +
\left( t_0-t\right)
 +
\right] ^{\frac{1}{3\alpha _{0}^{2}}}.
 +
\end{equation}
 +
\begin{equation}
 +
e^{-\sqrt{3/2}\alpha _{0}\phi(t) }=\pm \sqrt{3V_{0}}\alpha _{0}\sinh \left(
 +
G_{0}\right) \left( t_{0}-t\right) ,
 +
\end{equation}
 +
where $t_{0}$ is an arbitrary integration constant.
 +
\begin{eqnarray}\label{potsimpl}
 +
V(t)&=&\frac{V_{0}}{3V_{0}\alpha _{0}^{2}\sinh ^{2}\left( G_{0}\right) }\frac{1
 +
}{\left( t-t_{0}\right) ^{2}}\nonumber\\
 +
&=&\left( \frac{1-\alpha _{0}^{2}}{3\alpha
 +
_{0}^{4}}\right) \frac{1}{\left( t-t_{0}\right) ^{2}}=\frac{V_{0}}{\left( t-t_{0}\right) ^{2}},
 +
\end{eqnarray}
 +
with the constants $V_{0}$, $\alpha _{0}$ and $
 +
G_{0}$ satisfying the consistency condition
 +
\begin{equation}
 +
3V_{0}\alpha _{0}^{2}\sinh ^{2}\left(G_{0}\right)=1.
 +
\end{equation}</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 677: Line 718:
  
  
<div id=""></div>
+
<div id="ES_9"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 26===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: ES_9</p>
 
+
Obtain solution of the problem [[#ES_4]]
 +
in the case $\alpha _0= \pm 1$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\begin{equation}
 +
\sqrt{24}\left[ \phi (G)-\phi _{0}^{+}\right] =-e^{-2G}-2G, \qquad \alpha
 +
_{0}=+1,
 +
\end{equation}
 +
and
 +
\begin{equation}
 +
\sqrt{24}\left[ \phi (G)-\phi _{0}^{-}\right] =\ln \left| \frac{\coth G-1}{
 +
\coth G+1}\right| +e^{2G}-1, \quad \alpha _{0}=-1,
 +
\end{equation}
 +
respectively, where $\phi _{0}^{+}$ and $\phi _{0}^{-}$ are arbitrary
 +
constants of integration.
 +
 
 +
\begin{equation}
 +
t(G)-t_{0}^{+}=-\frac{1}{\sqrt{3V_{0}}}\int \frac{e^{-\sqrt{3/2}\phi }}{
 +
\sinh G+\cosh G}dG, \qquad \alpha _{0}=+1,
 +
\end{equation}
 +
and
 +
\begin{equation}
 +
t(G)-t_{0}^{-}=-\frac{1}{\sqrt{3V_{0}}}\int \frac{e^{\sqrt{3/2}\phi }}{\sinh
 +
G-\cosh G}dG, \qquad \alpha _{0}=-1,
 +
\end{equation}
 +
respectively, where $t_{0}^{+}$ and $t_{0}^{-}$ are arbitrary constants of
 +
integration.
 +
 
 +
The explicit dependence of the physical time on the
 +
parameter $G$ reads
 +
\begin{eqnarray}
 +
t(G)-t_{0}^{+}&=&-\frac{e^{-\sqrt{3/2}\phi _{0}^{+}}}{\sqrt{3V_{0}}}
 +
\int \frac{\exp \left[ (1/4)\left( e^{-2G}+2G\right) \right] }{\sinh G+\cosh
 +
G}dG, \nonumber\\
 +
&& \alpha _{0}=+1,
 +
\end{eqnarray}
 +
and
 +
\begin{eqnarray}
 +
&&t(G)-t_{0}^{-}=-\frac{e^{\sqrt{3/2}\phi _{0}^{-}}}{\sqrt{3V_{0}}}\times \nonumber\\
 +
&&\int \frac{
 +
\left[ (\coth G-1)/(\coth G+1)\right] ^{1/4}\exp \left[ (1/4)\left(
 +
e^{2G}-1\right) \right] }{\sinh G-\cosh G}dG,  \nonumber\\
 +
&&\alpha _{0}=-1,
 +
\end{eqnarray}
 +
respectively. The parametric dependence of the scale factor is given by
 +
\begin{equation}
 +
a(G)=a_{0}^{+}\exp \left[ \frac{1}{12}\left( 2G-e^{-2G}\right) \right] ,
 +
\qquad \alpha _{0}=+1,
 +
\end{equation}
 +
and
 +
\begin{equation}
 +
a(G)=a_{0}^{-}\exp \left[ \frac{1}{12}\left( e^{2G}+2G\right) \right] ,
 +
\qquad \alpha_{0}=-1,
 +
\end{equation}
 +
respectively, where $a_{0}^{+}$ and $a_{0}^{-}$ are arbitrary constants of
 +
integration.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 691: Line 784:
  
  
<div id=""></div>
+
<div id="ES_10"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 27===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: ES_10</p>
 
+
Obtain solution of the equation (\ref{fin}) with
 +
\begin{equation}
 +
\frac{1}{2V}\frac{dV}{d\phi }=\sqrt{\frac{3}{2}}\;\alpha _{1}\,\tanh G,
 +
\end{equation}
 +
where $\alpha _{1}$ is an arbitrary constant.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">With this choice, the
 +
evolution equation (\ref{fin}) takes the simple form
 +
\begin{equation}
 +
\frac{dG}{d\phi }=\sqrt{\frac{3}{2}}\left( 1+\alpha _{1}\right) ,
 +
\end{equation}
 +
with the general solution given by
 +
\begin{equation}
 +
G\left( \phi \right) =\sqrt{\frac{3}{2}}\left( 1+\alpha _{1}\right) \left(
 +
\phi -\phi _{0}\right) ,
 +
\end{equation}
 +
where $\phi _{0}$ is an arbitrary constant of integration.
 +
 
 +
\begin{equation}
 +
V\left( \phi \right) =V_{0}\cosh ^{\frac{2\alpha _{1}}{1+\alpha _{1}}}\left[
 +
\sqrt{\frac{3}{2}}\left( 1+\alpha _{1}\right) \left( \phi -\phi _{0}\right)
 +
\right] .  \label{kkk}
 +
\end{equation}
 +
\begin{equation}
 +
t-t_{0}=\frac{1}{\sqrt{2V_{0}}} \int \frac{d\phi }{\cosh ^{\frac{\alpha _1}{
 +
1+\alpha _1}}\left[ \sqrt{\frac{3}{2}}\left( 1+\alpha _1\right) \left( \phi
 +
-\phi _{0}\right) \right] \sinh \left[ \sqrt{\frac{3}{2}}\left( 1+\alpha _1
 +
\right) \left( \phi -\phi _{0}\right) \right] }.
 +
\end{equation}
 +
 
 +
\begin{equation}
 +
a=a_{0}\sinh ^{\frac{1}{3\left( 1+\alpha _1\right) }}\left[ \sqrt{\frac{3}{2}
 +
}\left( 1+\alpha _1\right) \left( \phi -\phi _{0}\right) \right] ,
 +
\end{equation}
 +
\begin{equation}
 +
q=3\tanh ^{2}\left[ \sqrt{\frac{3}{2}}\left( 1+\alpha _1\right) \left( \phi
 +
-\phi _{0}\right) \right] -1.
 +
\end{equation}
 +
 
 +
[[File:hyp1.jpg|center|thumb|400px|]]
 +
[[File:hyp2.jpg|center|thumb|400px|Depicted is the variation of the generalized hyperbolic cosine scalar field potential as a function of $\phi $, in the first plot, and as the variation in time, in the second plot, for different values of $\alpha _1$: $\alpha _1=0.1 $ (solid curve), $\alpha _1=0.15$ (dotted curve), $\alpha _1=0.20$ (short dashed curve), $\alpha _1=0.25$ (dashed curve), and $\alpha _1=0.30$ (long dashed curve), respectively.]]
 +
 
 +
<br/>
 +
----
 +
<br/>
 +
 
 +
[[File:hyp3.jpg|center|thumb|400px|]]
 +
[[File:hyp4.jpg|center|thumb|400px|Depicted is the time variation of the scale factor, in the first plot, and of the deceleration parameter, in the second plot, of the Universe filled with a scalar field with a generalized hyperbolic cosine self-interaction potential for different values of $\alpha _1$: $\alpha _1=0.1 $ (solid curve), $\alpha _1=0.15$ (dotted curve), $\alpha _1=0.20$ (short dashed curve), $\alpha _1=0.25$ (dashed curve), and $\alpha _1=0.30$ (long dashed curve), respectively.]]</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 705: Line 843:
  
  
<div id=""></div>
+
<div id="ES_11"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 28===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: ES_11</p>
 
+
Obtain solution of the equation (\ref{fin}) for the case
 +
\begin{equation}
 +
G=\mathrm{arccoth}\left( \sqrt{\frac{3}{2}}\frac{\phi }{\alpha _{2}}\right)
 +
,\qquad \alpha _{2}=\mathrm{constant}.
 +
\end{equation}
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\begin{equation}
 +
V\left( \phi \right) =V_{0}\left( \frac{\phi }{\alpha _{2}}\right)
 +
^{-2\left( \alpha _{2}+1\right) }\left[ \frac{3}{2}\left( \frac{\phi }{
 +
\alpha _{2}}\right) ^{2}-1\right] ,  \label{mmm}
 +
\end{equation}
 +
where $V_{0}$ is an arbitrary constant of integration.
 +
 
 +
\begin{equation}
 +
\frac{\phi (t)}{\alpha _{2}}=\left[ \frac{\sqrt{2V_{0}}\left( \alpha
 +
_{2}+2\right) }{\alpha _{2}}\right] ^{\frac{1}{\alpha _{2}+2}}\left(
 +
t-t_{0}\right) ^{\frac{1}{\alpha _{2}+2}}.
 +
\end{equation}
 +
\begin{equation}
 +
a=a_{0}\exp \left( \frac{\phi ^{2}}{4\alpha _{2}}\right) =
 +
a_0\exp \left\{
 +
\frac{1}{4\alpha _{2}}\left[ \frac{\left( \alpha _{2}+2\right) \sqrt{2V_{0}}
 +
}{\alpha _{2}}\right] ^{\frac{2}{\alpha _{2}+2}}\left( t-t_{0}\right) ^{
 +
\frac{2}{\alpha _{2}+2}}\right\} ,
 +
\end{equation}
 +
with $a_{0}$ an arbitrary constant of integration. The deceleration
 +
parameter is given by
 +
\begin{equation}
 +
q=2\left( \frac{\phi }{\alpha _{2}}\right) ^{-2}-1=
 +
2\left[ \frac{\sqrt{2V_{0}
 +
}\left( \alpha _{2}+2\right) }{\alpha _{2}}\right] ^{-\frac{2}{\alpha _{2}+2}
 +
}\left( t-t_{0}\right) ^{-\frac{2}{\alpha _{2}+2}}-1.
 +
\end{equation}
 +
</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 719: Line 888:
  
  
<div id=""></div>
+
<div id="ES_12"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 29===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: ES_12</p>
 
+
Rewrite the equation (\ref{fin}) in form of the two linear differential equations for the variable $w=e^{-G}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">\begin{equation}
 +
\frac{dw}{d\phi }+\left[ \alpha _{3}+S\left( \phi \right) \right] w=M\left(
 +
\phi \right) ,  \label{n2}
 +
\end{equation}
 +
and
 +
\begin{equation}
 +
\frac{dw^{3}}{d\phi }+3\left[ \alpha _{3}-S\left( \phi \right) \right]
 +
w^{3}=3M\left( \phi \right) ,  \label{n3}
 +
\end{equation}
 +
where $M\left( \phi \right)$ is a new separation function, $S\left( \phi \right) =-d\ln \left| \sqrt{V}\right| /d\phi $ and $\alpha _{3}=-\sqrt{3/2}$.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 733: Line 911:
  
  
<div id=""></div>
+
<div id="ES_13"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 30===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: ES_13</p>
 
+
Obtain a consistency integral relation between the
 +
separation function $M(\phi )$ and the self-interaction potential $V(\phi )$, corresponding to the equations for the variable $w$, obtained in the previous problem.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">Equation~(\ref{n2}) can be integrated to provide
 +
\begin{equation}
 +
w=\sqrt{V}e^{-\alpha _{3}\phi }\left[ C_{0}+\int \frac{M\left( \phi \right)
 +
e^{\alpha _{3}\phi }}{\sqrt{V}}d\phi \right] ,  \label{n4}
 +
\end{equation}
 +
where $C_{0}$ is an arbitrary constant of integration. Equation~(\ref{n3})
 +
can be integrated to give
 +
\begin{equation}
 +
w=\frac{e^{-\alpha _{3}\phi }}{\sqrt{V}}\left[ C_{1}+3\int M\left( \phi
 +
\right) V^{3/2}e^{3\alpha _{3}\phi }d\phi \right] ^{1/3},  \label{n5}
 +
\end{equation}
 +
where $C_{1}$ is an arbitrary constant of integration.
 +
 
 +
Then the consistency relation reads
 +
\begin{equation}
 +
C_{1}+3\int M\left( \phi \right) V^{3/2}e^{3\alpha _{3}\phi }d\phi =V^{3}
 +
\left[ C_{0}+\int \frac{M\left( \phi \right) e^{\alpha _{3}\phi }}{\sqrt{V}}
 +
d\phi \right] ^{3}.  \label{n7}
 +
\end{equation}</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 747: Line 944:
  
  
<div id=""></div>
+
<div id="ES_14"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 31===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: ES_14</p>
 
+
Obtain exact solution of the equation (\ref{fin}) in the case $M\left( \protect\phi \right) =\protect\sqrt{V}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The consistency relation (\ref{n7}) now reads
 +
\begin{equation}
 +
C_{1}+3\int V^{2}e^{3\alpha _{3}\phi }d\phi =V^{3}A\left( \phi \right) ,
 +
\label{n8}
 +
\end{equation}
 +
where we have denoted $A(\phi )=\left( C_{0}+e^{\alpha _{3}\phi }/\alpha
 +
_{3}\right) ^{3}$.
 +
 
 +
In order to solve the integral Eq.~(\ref{n8}), we rewrite
 +
it as a linear first order differential equation for $V\left( \phi \right) $
 +
\begin{equation}
 +
\frac{dV}{d\phi }+\left[ \frac{d}{d\phi }\left( \ln A^{1/3}\right) \right] V=
 +
\frac{e^{3\alpha _{3}\phi }}{A\left( \phi \right) },  \label{n9}
 +
\end{equation}
 +
with the general solution given by
 +
\begin{equation}
 +
V(\phi )=A^{-1/3}\left( \phi \right) \left[ C_{2}+\int e^{3\alpha _{3}\phi
 +
}A^{-2/3}\left( \phi \right) d\phi \right] ,  \label{nn}
 +
\end{equation}
 +
where $C_{2}$ is an arbitrary constant of integration. Now by inserting $
 +
A\left( \phi \right) $ into Eq.~(\ref{nn}) yields the expression of the
 +
scalar field potential as
 +
\begin{equation}
 +
V(\phi )=\frac{\alpha _{3}^{2}\left\{ e^{3\alpha _{3}\phi }+2C_{0}\alpha
 +
_{3}e^{2\alpha _{3}\phi }-C_{0}^{3}\alpha _{3}^{3}+\left( C_{0}\alpha
 +
+e^{\alpha _{3}\phi }\right) ^{2}\left[ \frac{C_{2}}{\alpha _{3}}
 +
-2C_{0}\alpha _{3}\ln \left| C_{0}\alpha _{3}+e^{\alpha _{3}\phi }\right|
 +
\right] \right\} }{\left( C_{0}\alpha _{3}+e^{\alpha _{3}\phi }\right) ^{3}}.
 +
\label{pot1}
 +
\end{equation}
 +
 
 +
Therefore the general solution of Eq.~(\ref{fin}) is given
 +
by
 +
\begin{equation}
 +
G=\mathrm{arccoth}\left( \frac{ 1+w^{2}} { 1-w^{2}}
 +
\right) =\ln \left| \frac{1}{w}\right| ,
 +
\end{equation}
 +
where
 +
\begin{equation}
 +
w(\phi )=\sqrt{V(\phi )}
 +
e^{-\alpha _{3}\phi }\left( C_{0}+\frac{e^{\alpha _{3}\phi }}{\alpha _{3}}\right) .
 +
\end{equation}</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
Line 761: Line 999:
  
  
<div id=""></div>
+
<div id="ES_15"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 32===
<p style= "color: #999;font-size: 11px">problem id: </p>
+
<p style= "color: #999;font-size: 11px">problem id: ES_15</p>
 
+
Obtain exact solution of the equation (\ref{fin}) in the case $M\left( \protect\phi \right) =V^{-3/2}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;"></p>
+
     <p style="text-align: left;">The consistency relation (\ref{n7}) now reads
 +
\begin{equation}
 +
C_{0}+\int \frac{e^{\alpha _{3}\phi }}{V^{2}}d\phi =\frac{\left( C_{1}+\frac{
 +
1}{\alpha _{3}}e^{3\alpha _{3}\phi }\right) ^{1/3}}{V}.  \label{b1}
 +
\end{equation}
 +
 
 +
In order to solve Eq.~(\ref{b1}), we rewrite it as a linear first order
 +
differential equation for $V\left( \phi \right) $
 +
\begin{equation}
 +
\frac{dV}{d\phi }+\left[ \frac{d}{d\phi }\ln \left| \frac{1}{\left( C_{1}+
 +
\frac{1}{\alpha _{3}}e^{3\alpha _{3}\phi }\right) ^{1/3}}\right| \right] V
 +
=-\frac{e^{\alpha _{3}\phi }}{\left( C_{1}+\frac{1}{\alpha _{3}}e^{3\alpha
 +
_{3}\phi }\right) ^{1/3}}.  \label{b2}
 +
\end{equation}
 +
 
 +
Equation~(\ref{b2}) can be easily integrated, and yields the following
 +
solution
 +
\begin{equation}
 +
V\left( \phi \right) =\left( C_{1}+\frac{1}{\alpha _{3}}e^{3\alpha _{3}\phi
 +
}\right) ^{1/3}
 +
\times \left[ C_{3}-\int \frac{e^{\alpha _{3}\phi }}{\left( C_{1}+
 +
\frac{1}{\alpha _{3}}e^{3\alpha _{3}\phi }\right) ^{2/3}}d\phi \right] .
 +
\label{pot2}
 +
\end{equation}
 +
where $C_{3}$ is an arbitrary constant of integration.
 +
 
 +
Therefore the general solution of Eq.~(\ref{fin}) is given
 +
by
 +
\begin{equation}
 +
G=\mathrm{arccoth}\left( \frac{ 1+w^{2}}{1-w^{2}}
 +
\right) =\ln \left| \frac{1}{w}\right| ,
 +
\end{equation}
 +
where
 +
\begin{equation}
 +
w(\phi )=\left[ \frac{e^{-\alpha
 +
_{3}\phi }}{\sqrt{V(\phi )}}\right] \left( C_{1}+\frac{e^{3\alpha _{3}\phi }}{\alpha
 +
_{3}}\right) ^{1/3}.</p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
  
  
 
+
<!--
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 33===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 791: Line 1,065:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 34===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 805: Line 1,079:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 35===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 819: Line 1,093:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 36===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 833: Line 1,107:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 37===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 847: Line 1,121:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 38===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 861: Line 1,135:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 39===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 875: Line 1,149:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 40 ===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 889: Line 1,163:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 41===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  
Line 903: Line 1,177:
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 42===
 
<p style= "color: #999;font-size: 11px">problem id: </p>
 
<p style= "color: #999;font-size: 11px">problem id: </p>
  

Revision as of 01:36, 23 April 2014



The discovery of the Higgs particle has confirmed that scalar fields play a fundamental role in subatomic physics. Therefore they must also have been present in the early Universe and played a part in its development. About scalar fields on present cosmological scales nothing is known, but in view of the observational evidence for accelerated expansion it is quite well possible that they take part in shaping our Universe now and in the future. In this section we consider the evolution of a flat, isotropic and homogeneous Universe in the presence of a single cosmic scalar field. Neglecting ordinary matter and radiation, the evolution of such a Universe is described by two degrees of freedom, the homogeneous scalar field $\varphi(t)$ and the scale factor of the Universe $a(t)$. The relevant evolution equations are the Friedmann and Klein-Gordon equations, reading (in the units in which $c = \hbar = 8 \pi G = 1$) \[ \frac{1}{2}\, \dot{\varphi}^2 + V = 3 H^2, \quad \ddot{\varphi} + 3 H \dot{\varphi} + V' = 0, \] where $V[\varphi]$ is the potential of the scalar fields, and $H = \dot{a}/a$ is the Hubble parameter. Furthermore, an overdot denotes a derivative w.r.t.\ time, whilst a prime denotes a derivative w.r.t.\ the scalar field $\varphi$.


Problem 1

problem id: SSC_0

Show that the Hubble parameter cannot increase with time in the single scalar cosmology.


Problem 2

problem id: SSC_1

Obtain first-order differential equation for the Hubble parameter $H$ as function of $\varphi$ and find its stationary points.


Problem 3

problem id: SSC_2

Consider eternally oscillating scalar field of the form $\varphi(t) = \varphi_0 \cos \omega t$ and analyze stationary points in such a model.


Problem 4

problem id: SSC_3

Obtain explicit solution for the Hubble parameter in the model considered in the previous problem.


Problem 5

problem id: SSC_4

Obtain explicit time dependence for the scale factor in the model of problem #SSC_2.


Problem 6

problem id: SSC_5

Reconstruct the scalar field potential $V(\varphi)$ needed to generate the model of problem #SSC_2.


Problem 7

problem id: SSC_6_00

Describe possible final states for the Universe governed by a single scalar field at large times.


Problem 8

problem id: SSC_6_0

Formulate conditions for existence of end points of evolution in terms of the potential $V(\varphi)$.


Problem 9

problem id: SSC_6_1

Consider a single scalar cosmology described by the quadratic potential \[ V = v_0 + \frac{m^2}{2}\, \varphi^2. \] Describe all possible stationary points and final states of the Universe in this model.


Problem 10

problem id: SSC_7

Obtain actual solutions for the model of previous problem using the power series expansion \[ H[\varphi] = h_0 + h_1 \varphi + h_2 \varphi^2 + h_3 \varphi^3 + ... \] Consider the cases of $v_0 > 0$ and $v_0 < 0$.


Problem 11

problem id: SSC_8

Estimate main contribution to total expansion factor of the Universe.


Problem 12

problem id: SSC_9_0

Explain difference between end points and turning points of the scalar field evolution.


Problem 13

problem id: SSC_9

Show that the exponentially decaying scalar field \[ \varphi(t) = \varphi_0 e^{-\omega t} \] can give rise to unstable end points of the evolution.


Problem 14

problem id: SSC_10

Analyze all possible final states in the model of previous problem.


Problem 15

problem id: SSC_11

Express initial energy density of the model of problem #SSC_9 in terms of the $e$-folding number $N$.


Problem 16

problem id: SSC_12

Estimate mass of the particles corresponding to the exponential scalar field considered in problem #SSC_9.


Problem 17

problem id: SSC_13

Calculate the deceleration parameter for flat Universe filled with the scalar field in form of quintessence.


Problem 18

problem id: SSC_14_

When considering dynamics of scalar field $\varphi$ in flat Universe, let us define a function $f(\varphi)$ so that $\dot\varphi=\sqrt{f(\varphi)}$. Obtain the equation describing evolution of the function $f(\varphi)$. (T. Harko, F. Lobo and M. K. Mak, Arbitrary scalar field and quintessence cosmological models, arXiv: 1310.7167)


Exact Solutions for the Single Scalar Cosmology

after Harko (arXiv:1310.7167v4)


Problem 19

problem id: ES_0

Rewrite the equations of the single scalar cosmology \begin{eqnarray} 3H^{2} &=&\rho _{\phi }=\frac{\dot{\phi}^{2}}{2}+V\left( \phi \right) , \label{H} \\ 2\dot{H}+3H^{2} &=&-p_{\phi }=-\frac{\dot{\phi}^{2}}{2}+V\left( \phi \right), \label{H1} \\ \ddot{\phi}+3H\dot{\phi}+V^{\prime }\left( \phi \right) &=& 0, \label{phi} \end{eqnarray}% in terms of the parameter $G(\phi)$ introduced as \[\dot\phi^2=2V(\phi)\sinh^2 G(\phi).\]


Problem 18

problem id: ES_1

Obtain equation to determine the parameter $G$ as function of time.


Problem 19

problem id: ES_2

Obtain equation to determine the parameter $G$ as function of scale factor.


Problem 20

problem id: ES_3

Obtain the deceleration parameter $q$ in terms of the parameter $G$.


Problem 21

problem id: ES_4

Obtain solution of the equation (\ref{fin}) with \begin{equation} V=V_{0}\exp \left( \sqrt{6}\alpha _{0}\phi \right). \label{pp} \end{equation} in the case $\alpha _0\neq \pm 1$.


Problem 22

problem id: ES_5

Obtain explicit solution of the problem #ES_4 in the case $\alpha _{0}=\pm \sqrt{2}$.


Problem 23

problem id: ES_6

Obtain explicit solution of the problem #ES_4 in the case $\alpha _{0}=\pm \sqrt{3/2}$.


Problem 24

problem id: ES_7

Obtain explicit solution of the problem #ES_4 in the case $\alpha _{0}=\pm 2/\sqrt{3}$.


Problem 25

problem id: ES_8

Obtain a particular solution of the problem #ES_4 in the case $G(\phi)=G_{0}=\mathrm{constant}$.


Problem 26

problem id: ES_9

Obtain solution of the problem #ES_4 in the case $\alpha _0= \pm 1$.


Problem 27

problem id: ES_10

Obtain solution of the equation (\ref{fin}) with \begin{equation} \frac{1}{2V}\frac{dV}{d\phi }=\sqrt{\frac{3}{2}}\;\alpha _{1}\,\tanh G, \end{equation} where $\alpha _{1}$ is an arbitrary constant.


Problem 28

problem id: ES_11

Obtain solution of the equation (\ref{fin}) for the case \begin{equation} G=\mathrm{arccoth}\left( \sqrt{\frac{3}{2}}\frac{\phi }{\alpha _{2}}\right) ,\qquad \alpha _{2}=\mathrm{constant}. \end{equation}


Problem 29

problem id: ES_12

Rewrite the equation (\ref{fin}) in form of the two linear differential equations for the variable $w=e^{-G}$.


Problem 30

problem id: ES_13

Obtain a consistency integral relation between the separation function $M(\phi )$ and the self-interaction potential $V(\phi )$, corresponding to the equations for the variable $w$, obtained in the previous problem.


Problem 31

problem id: ES_14

Obtain exact solution of the equation (\ref{fin}) in the case $M\left( \protect\phi \right) =\protect\sqrt{V}$.


Problem 32

problem id: ES_15

Obtain exact solution of the equation (\ref{fin}) in the case $M\left( \protect\phi \right) =V^{-3/2}$.