Difference between revisions of "Statefinder parameters for interacting dark energy and cold dark matter"

From Universe in Problems
Jump to: navigation, search
(Problem 2)
Line 36: Line 36:
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;">Statefinder parameters in the general case can be presented in the following form
 
     <p style="text-align: left;">Statefinder parameters in the general case can be presented in the following form
 +
 +
 +
\[\begin{align}
 +
  & \frac{d}{dt}\frac{{\ddot{a}}}{a}=\frac{a-\ddot{a}\dot{a}}{{{a}^{2}}}=\frac{{}}{a}-\frac{{\ddot{a}}}{a}H, \\
 +
& \frac{{}}{a}=\frac{d}{dt}\frac{{\ddot{a}}}{a}+\frac{{\ddot{a}}}{a}H \\
 +
\end{align}\]
 +
Using second Friedmann equation $\left( \frac{8\pi G}{3}=1 \right)$ find
 +
\[\begin{align}
 +
  & \frac{{}}{a}=-\frac{1}{2}\left( \dot{\rho }+3\dot{p} \right)-\frac{1}{2}\left( \rho +3p \right),p \\
 +
& \dot{\rho }=-3H\left( \rho +p \right), \\
 +
& r=\frac{{}}{a{{H}^{3}}}=\frac{\rho }{{{H}^{2}}}-\frac{3}{2}\frac{{\dot{p}}}{{{H}^{3}}}, \\
 +
& {{H}^{2}}=\rho ,\quad H=-\frac{1}{3}\frac{{\dot{\rho }}}{\left( \rho +p \right)}, \\
 +
& r=1+\frac{9}{2}\frac{\rho +p}{\rho }\frac{{\dot{p}}}{{\dot{\rho }}} \\
 +
\end{align}\]
 +
For statefinder$s$ obtain
 +
\[\begin{align}
 +
  & s=\frac{r-1}{3\left( q-1/2 \right)}=\frac{\frac{9}{2}\frac{\rho +p}{\rho }\frac{{\dot{p}}}{{\dot{\rho }}}}{3\left( -\frac{{\ddot{a}}}{a{{H}^{2}}}-\frac{1}{2} \right)}, \\
 +
& -\frac{{\ddot{a}}}{a{{H}^{2}}}-\frac{1}{2}=\frac{-\frac{{\ddot{a}}}{a}-\frac{{{H}^{2}}}{2}}{{{H}^{2}}}=\frac{3}{2}\frac{p}{\rho }, \\
 +
& s=\frac{\rho +p}{p}\frac{{\dot{p}}}{{\dot{\rho }}} \\
 +
\end{align}\]
 +
 +
 
\begin{align}
 
\begin{align}
 
\nonumber
 
\nonumber
Line 56: Line 78:
 
<div id="IDE_90"></div>
 
<div id="IDE_90"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
 
=== Problem 3 ===
 
=== Problem 3 ===
 
Show that the statefinder parameter $r$ is generally necessary to characterize any variation in the overall equation of state of the cosmic medium.
 
Show that the statefinder parameter $r$ is generally necessary to characterize any variation in the overall equation of state of the cosmic medium.

Revision as of 11:06, 18 February 2015




Problem 1

(after [1])

Show that in flat Universe both the Hubble parameter and deceleration parameter do not depend on whether or not dark components are interacting. Become convinced the second derivative $\ddot H$ does depend on the interaction between the components.


Problem 2

Find statefinder parameters for interacting dark energy and cold dark matter.


Problem 3

Show that the statefinder parameter $r$ is generally necessary to characterize any variation in the overall equation of state of the cosmic medium.


Problem 4

Find relation between the statefinder parameters in the flat Universe.


Problem 5

Express the statefinder parameters in terms of effective state parameter $w_{(de)eff}$, for which \[\dot\rho_{de}+3H(1+w_{(de)eff})\rho_{de}=0.\]


Problem 6

Find the statefinder parameters for $Q=3\delta H\rho_{dm}$, assuming that $w_{de}=const$.


Problem 7

Find statefinder parameters for the case $\rho_{dm}/\rho_{de}=a^{-\xi}$, where $\xi$ is a constant parameter in the range $[0,3]$ and $w_{de}=const$.


Problem 8

Show that in the case $\rho_{dm}/\rho_{de}=a^{-\xi}$ the current value of the statefinder parameter $s=s_0$ can be used to measure the deviation of cosmological models from the SCM.


Problem 9

Find how the statefinder parameters enter the expression for the luminosity distance.