Difference between revisions of "Statefinder parameters for interacting dark energy and cold dark matter"

From Universe in Problems
Jump to: navigation, search
(Problem 2)
(Problem 2)
Line 41: Line 41:
 
\end{align}\]  
 
\end{align}\]  
 
Using second Friedmann equation $\left( \frac{8\pi G}{3}=1 \right)$ find
 
Using second Friedmann equation $\left( \frac{8\pi G}{3}=1 \right)$ find
\[\begin{align}
+
\[\begin{align}
  & \frac{{}}{a}=-\frac{1}{2}\left( \dot{\rho }+3\dot{p} \right)-\frac{1}{2}\left( \rho +3p \right),p \\  
+
& \frac{\dddot{a}}{a}=-\frac{1}{2}\left( \dot{\rho }+3\dot{p} \right)-\frac{1}{2}\left( \rho +3p \right),p \\  
  & \dot{\rho }=-3H\left( \rho +p \right), \\  
+
  & \dot{\rho}=-3H\left( \rho +p \right), \\  
  & r=\frac{{}}{a{{H}^{3}}}=\frac{\rho }{{{H}^{2}}}-\frac{3}{2}\frac{{\dot{p}}}{{{H}^{3}}}, \\  
+
  & r=\frac{\dddot{a}}{a{{H}^{3}}}=\frac{\rho }{{{H}^{2}}}-\frac{3}{2}\frac{{\dot{p}}}{{{H}^{3}}}, \\  
  & {{H}^{2}}=\rho ,\quad H=-\frac{1}{3}\frac{{\dot{\rho }}}{\left( \rho +p \right)}, \\  
+
  & {H}^{2}= \rho ,\quad H=-\frac{1}{3}\frac{\dot{\rho}}{\left( \rho +p \right)}, \\  
 
  & r=1+\frac{9}{2}\frac{\rho +p}{\rho }\frac{{\dot{p}}}{{\dot{\rho }}} \\  
 
  & r=1+\frac{9}{2}\frac{\rho +p}{\rho }\frac{{\dot{p}}}{{\dot{\rho }}} \\  
 
\end{align}\]  
 
\end{align}\]  
 
For statefinder$s$ obtain
 
For statefinder$s$ obtain
\[\begin{align}
+
\[\begin{align}
  & s=\frac{r-1}{3\left( q-1/2 \right)}=\frac{\frac{9}{2}\frac{\rho +p}{\rho }\frac{{\dot{p}}}{{\dot{\rho }}}}{3\left( -\frac{{\ddot{a}}}{a{{H}^{2}}}-\frac{1}{2} \right)}, \\  
+
& s=\frac{r-1}{3\left( q-1/2 \right)}=\frac{\frac{9}{2}\frac{\rho +p}{\rho }\frac{{\dot{p}}}{{\dot{\rho }}}}{3\left( -\frac{{\ddot{a}}}{a{{H}^{2}}}-\frac{1}{2} \right)}, \\  
 
  & -\frac{{\ddot{a}}}{a{{H}^{2}}}-\frac{1}{2}=\frac{-\frac{{\ddot{a}}}{a}-\frac{{{H}^{2}}}{2}}{{{H}^{2}}}=\frac{3}{2}\frac{p}{\rho }, \\  
 
  & -\frac{{\ddot{a}}}{a{{H}^{2}}}-\frac{1}{2}=\frac{-\frac{{\ddot{a}}}{a}-\frac{{{H}^{2}}}{2}}{{{H}^{2}}}=\frac{3}{2}\frac{p}{\rho }, \\  
 
  & s=\frac{\rho +p}{p}\frac{{\dot{p}}}{{\dot{\rho }}} \\  
 
  & s=\frac{\rho +p}{p}\frac{{\dot{p}}}{{\dot{\rho }}} \\  

Revision as of 11:11, 18 February 2015




Problem 1

(after [1])

Show that in flat Universe both the Hubble parameter and deceleration parameter do not depend on whether or not dark components are interacting. Become convinced the second derivative $\ddot H$ does depend on the interaction between the components.


Problem 2

Find statefinder parameters for interacting dark energy and cold dark matter.


Problem 3

Show that the statefinder parameter $r$ is generally necessary to characterize any variation in the overall equation of state of the cosmic medium.


Problem 4

Find relation between the statefinder parameters in the flat Universe.


Problem 5

Express the statefinder parameters in terms of effective state parameter $w_{(de)eff}$, for which \[\dot\rho_{de}+3H(1+w_{(de)eff})\rho_{de}=0.\]


Problem 6

Find the statefinder parameters for $Q=3\delta H\rho_{dm}$, assuming that $w_{de}=const$.


Problem 7

Find statefinder parameters for the case $\rho_{dm}/\rho_{de}=a^{-\xi}$, where $\xi$ is a constant parameter in the range $[0,3]$ and $w_{de}=const$.


Problem 8

Show that in the case $\rho_{dm}/\rho_{de}=a^{-\xi}$ the current value of the statefinder parameter $s=s_0$ can be used to measure the deviation of cosmological models from the SCM.


Problem 9

Find how the statefinder parameters enter the expression for the luminosity distance.