Difference between revisions of "The role of curvature in the dynamics of the Universe"

From Universe in Problems
Jump to: navigation, search
(Problem 6.)
Line 1: Line 1:
 
[[Category:Dynamics of the Universe in the Big Bang Model|3]]
 
[[Category:Dynamics of the Universe in the Big Bang Model|3]]
__NOTOC__
+
__TOC__
 +
 
 
<div id="dyn38"></div>
 
<div id="dyn38"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1. ===
+
=== Problem 1: curvature domination ===
 
Derive $\rho(t)$ in a spatially open Universe filled with dust for the epoch when the curvature term in the first Friedman equation is dominating.
 
Derive $\rho(t)$ in a spatially open Universe filled with dust for the epoch when the curvature term in the first Friedman equation is dominating.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 13: Line 14:
 
therefore $a\sim t$ and thus $\rho(t) =\rho_{0}( t_{0}/t )^3$.</p>
 
therefore $a\sim t$ and thus $\rho(t) =\rho_{0}( t_{0}/t )^3$.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn3"></div>
 
<div id="dyn3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2. ===
+
=== Problem 2: early Universe ===
 
Show that in the early Universe the curvature term is negligibly small.
 
Show that in the early Universe the curvature term is negligibly small.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 27: Line 26:
 
     <p style="text-align: left;">The contribution of curvature to $H^{2}$ (the first Friedman equation) is $\sim a^{-2}$, that of non-relativistic matter is $\sim a^{-3}$, of radiation $\sim a^{-4}$. Therefore for sufficiently small $a$, i.e. close enough to the Big Bang, the curvature term can be neglected.</p>
 
     <p style="text-align: left;">The contribution of curvature to $H^{2}$ (the first Friedman equation) is $\sim a^{-2}$, that of non-relativistic matter is $\sim a^{-3}$, of radiation $\sim a^{-4}$. Therefore for sufficiently small $a$, i.e. close enough to the Big Bang, the curvature term can be neglected.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn33"></div>
 
<div id="dyn33"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 3. ===
+
=== Problem 3: curvature and matter ===
 
Show that $k =\text{sign}(\Omega-1)$ and express the current value of the scale factor $a_{0}$ through the observed quantities $\Omega_{0}$ and $H_{0}$.
 
Show that $k =\text{sign}(\Omega-1)$ and express the current value of the scale factor $a_{0}$ through the observed quantities $\Omega_{0}$ and $H_{0}$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 53: Line 50:
 
\end{equation}</p>
 
\end{equation}</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn_curv4"></div>
 
<div id="dyn_curv4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 4. ===
+
=== Problem 4: lower bound on $a_0$ ===
 
Find the lower bound for $a_{0}$, knowing that the Cosmic background (CMB) data combined with SSNIa data imply
 
Find the lower bound for $a_{0}$, knowing that the Cosmic background (CMB) data combined with SSNIa data imply
 
\[-0.0178<(1-\Omega)<0.0063.\]
 
\[-0.0178<(1-\Omega)<0.0063.\]
Line 75: Line 70:
 
There is no upper bound, as the observational data does not exclude (or rather, tends to imply) the possibility of a spatially flat Universe, with $a_{0}\to\infty$.</p>
 
There is no upper bound, as the observational data does not exclude (or rather, tends to imply) the possibility of a spatially flat Universe, with $a_{0}\to\infty$.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn43"></div>
 
<div id="dyn43"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 5. ===
+
=== Problem 5: curvature dynamics ===
 
Fnd the time dependence of $\left|\Omega-1\right|$ in a Universe with domination of
 
Fnd the time dependence of $\left|\Omega-1\right|$ in a Universe with domination of
  
Line 94: Line 87:
 
     <p style="text-align: left;">The first Friedman equation can be expressed as
 
     <p style="text-align: left;">The first Friedman equation can be expressed as
 
\[\Omega  - 1 = \frac{k}{a^2 H^2}.\]
 
\[\Omega  - 1 = \frac{k}{a^2 H^2}.\]
As $a(t)\sim t^{2/[3(1+w)]}$ (see [[Solutions of Friedman equations in the Big Bang model#dyn12|problem]]), then $H\sim 1/t$ and
+
As [[Solutions of Friedman equations in the Big Bang model#dyn14|for a constant EoS parameter]] we have $a(t)\sim t^{2/[3(1+w)]}$, then $H\sim 1/t$ and
 
\[\Omega-1 \sim k\;t^{\frac{2}{3}\frac{1+3w}{1+w}}.\]
 
\[\Omega-1 \sim k\;t^{\frac{2}{3}\frac{1+3w}{1+w}}.\]
 
Finally,
 
Finally,
Line 102: Line 95:
 
'''b)''' \[\Omega-1\sim k t.\]</p>
 
'''b)''' \[\Omega-1\sim k t.\]</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn4"></div>
 
<div id="dyn4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
+
=== Problem 6: curvature in the first three minutes. ===
=== Problem 6. ===
+
 
Estimate the upper bound of the curvature term in the first Friedman equation during the electroweak epoch ($t\sim 10^{-10}$~s) and the nucleosynthesis epoch ($t\sim 1-200$~s).
 
Estimate the upper bound of the curvature term in the first Friedman equation during the electroweak epoch ($t\sim 10^{-10}$~s) and the nucleosynthesis epoch ($t\sim 1-200$~s).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
   <div class="NavHead">solution</div>
+
   <div class="NavHead">no solution yet</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
 
     <p style="text-align: left;"></p>
 
     <p style="text-align: left;"></p>
nothing here yet
 
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+
 
+
  
  
 
<div id="dyn-Kumar1"></div>
 
<div id="dyn-Kumar1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 7: acceleration ===
 +
Derive and analyze the conditions of accelerated expansion for a one-component Universe of arbitrary curvature with the component's state parameter $w$
  
=== Problem 7. ===
+
[http://arxiv.org/abs/1109.6924 S.Kumar, arXiv:1109.6924].
Derive and analyze the conditions of accelerated expansion for a one-component Universe of arbitrary curvature with the component's state parameter $w$ [http://arxiv.org/abs/1109.6924 S.Kumar arXiv: 1109.6924].
+
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 149: Line 137:
 
In both variants the first inequality is the restriction on pressure, and the second one on the spatial curvature.</p>
 
In both variants the first inequality is the restriction on pressure, and the second one on the spatial curvature.</p>
 
   </div>
 
   </div>
</div>
+
</div></div>
</div>
+

Revision as of 12:08, 14 October 2012

Problem 1: curvature domination

Derive $\rho(t)$ in a spatially open Universe filled with dust for the epoch when the curvature term in the first Friedman equation is dominating.


Problem 2: early Universe

Show that in the early Universe the curvature term is negligibly small.


Problem 3: curvature and matter

Show that $k =\text{sign}(\Omega-1)$ and express the current value of the scale factor $a_{0}$ through the observed quantities $\Omega_{0}$ and $H_{0}$.


Problem 4: lower bound on $a_0$

Find the lower bound for $a_{0}$, knowing that the Cosmic background (CMB) data combined with SSNIa data imply \[-0.0178<(1-\Omega)<0.0063.\]


Problem 5: curvature dynamics

Fnd the time dependence of $\left|\Omega-1\right|$ in a Universe with domination of

a) radiation,

b) matter.


Problem 6: curvature in the first three minutes.

Estimate the upper bound of the curvature term in the first Friedman equation during the electroweak epoch ($t\sim 10^{-10}$~s) and the nucleosynthesis epoch ($t\sim 1-200$~s).


Problem 7: acceleration

Derive and analyze the conditions of accelerated expansion for a one-component Universe of arbitrary curvature with the component's state parameter $w$

S.Kumar, arXiv:1109.6924.