Difference between revisions of "Thermodynamical Properties of Elementary Particles"

From Universe in Problems
Jump to: navigation, search
(Problem 1)
Line 75: Line 75:
  
 
<div id="лейбел"></div>
 
<div id="лейбел"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
<div id="ter_1"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1 ===
 
=== Problem 1 ===
УСЛОВИЯ
+
Find the energy and number densities for bosons and fermions in the relativistic limit.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
 
   <div style="width:100%;" class="NavContent">
 
   <div style="width:100%;" class="NavContent">
     <p style="text-align: left;">РЕШЕНИЕ</p>
+
     <p style="text-align: left;">
 +
The energy density equals to
 +
$$
 +
\rho  = \left\{ \begin{array}{c}
 +
                \frac{\pi^2}{30}gT^4 \quad \;  for\;bosons\\
 +
                \frac{7}{8}\frac{\pi^2}{30}gT^4 \quad  for \;fermions
 +
                \end{array}
 +
\right.
 +
$$
 +
Here $g$ equals to the number of internal degrees of freedom for the particle. For photon (with spin $S=1$) $g=2$  due to absence of longitudinal polarization for the zero-mass particles.
 +
The number density is the following:
 +
\[
 +
n = \left\{ \begin{array}{c}
 +
  \frac{\zeta (3)}{\pi ^2 }gT^3 \quad \;for\;bosons  \\
 +
  \frac{3}
 +
{4}\frac{\zeta (3)}{\pi ^2 }gT^3 \quad \;  for\;fermions
 +
\end{array}  \right.
 +
\]
 +
Here $\zeta (x)$ is the Riemann $\zeta$-function;  $\zeta (3) \approx
 +
1.202$.</p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
<div id="ter_2"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 2 ===
 +
Find the number densities and energy densities, normalized to the photon energy density at the same temperature, for neutrinos, electrons, positrons, pions and nucleons in the relativistic limit.
 +
 
 +
 
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">
 +
 
 +
 
 +
\[
 +
\frac{n_i}{n_\gamma} = \left\{
 +
\begin{gathered}
 +
  \frac{1}{2}g_i \quad  for\; bosons\\
 +
  \frac{3}{8}g_i \quad for\; fermions\\
 +
\end{gathered} 
 +
\right.;\quad
 +
\frac{\rho_i}{\rho_\gamma} = \left\{
 +
\begin{gathered}
 +
  \frac{1}{2}g_i \quad  for\; bosons\\
 +
  \frac{7}{16}g_i \quad for\; fermions\\
 +
\end{gathered}  \right.
 +
\]
 +
 
 +
 
 +
 
 +
\[
 +
\begin{gathered}
 +
  \left(\frac{n_i }{n_\gamma},\frac{\rho_i}{\rho_\gamma} \right)_{\nu_{\mu ,e}}  = \left( \frac{3}{8},\frac{7}{16} \right);\;\;\left( \frac{n_i}{n_\gamma},
 +
\frac{\rho_i}{\rho_\gamma} \right)_{e^\pm}  = \left(
 +
\frac{3}{4},\frac{7}{8} \right);\\
 +
  \left( \frac{n_i}{n_\gamma},\frac{\rho_i}{\rho_\gamma} \right)_\pi  = \left( \frac{1}{2},\frac{1}{2} \right);\;\;\left( \frac{n_i}{n_\gamma},\frac{\rho_i}{\rho_\gamma} \right)_{n,p}  = \left( \frac{3}{4},\frac{7}{8}
 +
\right) \\
 +
\end{gathered}
 +
\]
 +
 
 +
 
 +
 
 +
 
 +
    </p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
<div id="ter_3"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 3 ===
 +
Calculate the average energy per particle in the relativistic and non-relativistic limits.
 +
 
 +
 
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> 
 +
Average energy per particle reads$\left\langle \varepsilon  \right\rangle  = \rho /n$. For $T \gg m$
 +
    \[
 +
\left\langle \varepsilon  \right\rangle  = \left\{
 +
\begin{gathered}
 +
  \frac{\pi ^2}{30\zeta (3)}T\quad \;  for\;  bosons\\
 +
  \frac{7\pi ^4}{180\zeta(3)}T\quad  for\; fermions\\
 +
\end{gathered}  \right.
 +
\]
 +
In the non-relativistic limit $(T \ll m)$ one obtains the following:
 +
\[
 +
\left\langle \varepsilon  \right\rangle  = m + \frac{3}{2}T \approx m
 +
\]
 +
 
 +
  </p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
<div id="ter_4"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 4 ===
 +
Find the number of internal degrees of freedom for a quark.
 +
 
 +
 
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> 
 +
 
 +
For quark one obtains the following:
 +
\[
 +
g = 2(\, spin) \times 3(\, particle) \times 2(\, particles + \, antiparticle) = 12
 +
\]
 +
    </p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<div id="ter_5n"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 5 ===
 +
Find the entropy density for bosons end fermions with zero chemical potential.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"> 
 +
 
 +
 
 +
In the considered case one gets:
 +
    \[
 +
s = \frac{\rho  + p}{T};\quad p = \frac{1}{3}\rho
 +
\]
 +
Using the results of  [[#ter_1|problem]] of the present Chapter one obtains the following:
 +
\[
 +
s = \frac{2\pi ^2}{45}g^* T^3,
 +
\]
 +
where $g^* = 1$ for bosons and $g^* = 7/8$ for fermions.
 +
  </p>
 +
  </div>
 +
</div></div>
 +
 
 +
 
 +
<div id="ter_1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 2 ===
 +
 
 +
 
 +
 
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">      </p>
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>

Revision as of 17:52, 1 October 2012


 In the mid-forties G.A.~Gamov proposed the idea
 of the "hot" origin of the World. Therefore thermodynamics 
 was introduced into cosmology, and nuclear physics too. 
 Before him the science of the evolution of Universe 
 contained only dynamics and geometry of the World.
                                          A.D.Chernin.



The Standard Model particles and their properties.==
Particles Mass Number of states $g$ (particles and anti-particles)
spin color
Photon ($\gamma$) 0 2 1 2
$W^+,W^-$ $80.4\, GeV$ 3 1 6
$Z$ $91.2\,GeV$ 3 1 3
Gluon ($g$) 0 2 8 16
Higgs boson $>114\, GeV$ 1 1 1
Bosons 28
$u,/,\bar{u}$ $3\, MeV$ 2 3 12
$d,/,\bar{d}$ $6\, MeV$ 2 3 12
$s,/,\bar{s}$ $100\,MeV$ 2 3 12
$c,/,\bar{c}$ $1.2\,GeV$ 2 3 12
$b,/,\bar{b}$ $4.2\, GeV$ 2 3 12
$t,/,\bar{t}$ $175\,GeV$ 2 3 12
$e^+,\,e^-$ $0.511\, MeV $ 2 1 4
$\mu^+,\,\mu^-$ $105.7\,MeV$ 2 1 4
$\tau^+,\,\tau^-$ $1.777\, GeV$ 2 1 4
$\nu_e,\,\bar{\nu_e}$ $<3\,eV$ 1 1 2
$\nu_\mu,\,\bar{\nu_\mu}$ $<0.19\,MeV $ 1 1 2
$\nu_\tau,\,\bar{\nu_\tau}$ $<18.2\, MeV $ 1 1 2
Fermions 90



Problem 1

Find the energy and number densities for bosons and fermions in the relativistic limit.


Problem 2

Find the number densities and energy densities, normalized to the photon energy density at the same temperature, for neutrinos, electrons, positrons, pions and nucleons in the relativistic limit.



Problem 3

Calculate the average energy per particle in the relativistic and non-relativistic limits.



Problem 4

Find the number of internal degrees of freedom for a quark.





Problem 5

Find the entropy density for bosons end fermions with zero chemical potential.


Problem 2