Difference between revisions of "Thermodynamics of Black-Body Radiation"

From Universe in Problems
Jump to: navigation, search
(Problem 5)
Line 16: Line 16:
  
  
 +
Now let us consider in the next 4 problems some volume $V$, filled with black-body radiation of temperature $T$.
  
 
<div id="bbrazm2"></div>
 
<div id="bbrazm2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 2 ===
 
=== Problem 2 ===
Find the number of photons with frequencies in the interval $[\omega ,\omega +d\omega]$ in a volume $V$ filled with black-body radiation of temperature $T$.
+
Find the number of photons with frequencies in the interval $[\omega ,\omega +d\omega]$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 34: Line 35:
  
 
=== Problem 3 ===
 
=== Problem 3 ===
Find total number of photons in the volume $V$ filled with black body radiation at temperature $T$.
+
Find the total number of photons.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 48: Line 49:
  
 
=== Problem 4 ===
 
=== Problem 4 ===
Estimate the number of photons in a gas oven at room temperature and at maximum heat.
+
What is this number for a gas oven at room temperature and at maximum heat?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 62: Line 63:
  
 
=== Problem 5 ===
 
=== Problem 5 ===
What is the energy of photons with frequencies in the interval $[ \omega ,\omega +d\omega]$, filling the volume $V$ at temperature $T$?
+
What is the energy of photons with frequencies in the interval $[ \omega ,\omega +d\omega]$?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 75: Line 76:
  
 
=== Problem 6 ===
 
=== Problem 6 ===
Calculate free energy, entropy and total energy of black-body radiation.
+
Calculate the free energy, entropy and total energy of black-body radiation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 82: Line 83:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 88: Line 88:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 7 ===
 
=== Problem 7 ===
Calculate thermal capacity of black-body radiation.
+
Calculate the thermal capacity of black-body radiation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 95: Line 95:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 101: Line 100:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 8 ===
 
=== Problem 8 ===
Find pressure of black-body radiation and construct its state equation.
+
Find the pressure of black-body radiation and construct its state equation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 108: Line 107:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 114: Line 112:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 9 ===
 
=== Problem 9 ===
Find adiabate equation for the photon gas of black-body radiation.
+
Find the adiabatic equation for the black-body radiation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 121: Line 119:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 135: Line 132:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 142: Line 138:
 
=== Problem 11 ===
 
=== Problem 11 ===
 
The binding energy of electron in the hydrogen atom equals to $13.6\
 
The binding energy of electron in the hydrogen atom equals to $13.6\
eV$. What is the temperature of Planck distribution, with this
+
eV$. What is the temperature of the Planck distribution with this
 
average photon energy?
 
average photon energy?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">

Revision as of 11:36, 15 October 2012



Problem 1

Show that the photon gas in thermal equilibrium has zero chemical potential.


Now let us consider in the next 4 problems some volume $V$, filled with black-body radiation of temperature $T$.

Problem 2

Find the number of photons with frequencies in the interval $[\omega ,\omega +d\omega]$.


Problem 3

Find the total number of photons.


Problem 4

What is this number for a gas oven at room temperature and at maximum heat?


Problem 5

What is the energy of photons with frequencies in the interval $[ \omega ,\omega +d\omega]$?


Problem 6

Calculate the free energy, entropy and total energy of black-body radiation.


Problem 7

Calculate the thermal capacity of black-body radiation.


Problem 8

Find the pressure of black-body radiation and construct its state equation.


Problem 9

Find the adiabatic equation for the black-body radiation.


Problem 10

Why CMB cannot be used to warm up food like in the microwave oven?


Problem 11

The binding energy of electron in the hydrogen atom equals to $13.6\ eV$. What is the temperature of the Planck distribution with this average photon energy?