Difference between revisions of "Time Evolution of CMB"

From Universe in Problems
Jump to: navigation, search
Line 1: Line 1:
 
[[Category:Cosmic Microwave Background (CMB)|2]]
 
[[Category:Cosmic Microwave Background (CMB)|2]]
  
 
+
__TOC__
__NOTOC__
+
  
 
<div id="cmb0"></div>
 
<div id="cmb0"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 1 ===
+
=== Problem 1: temperature ===
 
Show that in the expanding Universe the quantity $aT$ is an approximate invariant.
 
Show that in the expanding Universe the quantity $aT$ is an approximate invariant.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 15: Line 14:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb32"></div>
 
<div id="cmb32"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 2 ===
+
=== Problem 2: redshift ===
 
Show that the electromagnetic radiation frequency decreases with expansion of Universe
 
Show that the electromagnetic radiation frequency decreases with expansion of Universe
 
as $\omega(t)\propto a(t)^{-1}$.
 
as $\omega(t)\propto a(t)^{-1}$.
Line 29: Line 27:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb34"></div>
 
<div id="cmb34"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 3 ===
+
=== Problem 3: Planck spectrum ===
 
Show that if the radiation spectrum was equilibrium at some initial moment, then it will remain equilibrium during the following expansion.
 
Show that if the radiation spectrum was equilibrium at some initial moment, then it will remain equilibrium during the following expansion.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 45: Line 42:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id=""></div>
 
<div id=""></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 4 ===
+
=== Problem 4: one second after Big Bang ===
 
Find the CMB temperature one second after the Big Bang.
 
Find the CMB temperature one second after the Big Bang.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 58: Line 54:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb7"></div>
 
<div id="cmb7"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 5 ===
+
=== Problem 5: decoupling time ===
 
Show that creation of the relic radiation (the photon decoupling) took place in the matter-dominated epoch.
 
Show that creation of the relic radiation (the photon decoupling) took place in the matter-dominated epoch.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 78: Line 73:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 84: Line 78:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 6 ===
+
=== Problem 6: color of the sky ===
 
What color had the sky at the recombination epoch?
 
What color had the sky at the recombination epoch?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 92: Line 86:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb_tmp_2"></div>
 
<div id="cmb_tmp_2"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 7 ===
+
=== Problem 7: when the night sky appeared ===
 
When the night sky started to look black?
 
When the night sky started to look black?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 105: Line 98:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb4"></div>
 
<div id="cmb4"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 8 ===
+
=== Problem 8: CMB vs microwave ===
 
Estimate the moment of time when the CMB energy density was comparable to that in the microwave oven.
 
Estimate the moment of time when the CMB energy density was comparable to that in the microwave oven.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 122: Line 114:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb5"></div>
 
<div id="cmb5"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 9 ===
+
=== Problem 9: wavelengths ===
 
Estimate the moment of time when the CMB wavelength will be comparable to that in the microwave oven, which is $\lambda=12.6\ cm$.
 
Estimate the moment of time when the CMB wavelength will be comparable to that in the microwave oven, which is $\lambda=12.6\ cm$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 136: Line 127:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb_tmp_3"></div>
 
<div id="cmb_tmp_3"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 10 ===
+
=== Problem 10: micro or not ===
 
When the relic radiation obtained formal right to be called CMB? And for what period of time?
 
When the relic radiation obtained formal right to be called CMB? And for what period of time?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 151: Line 141:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb10"></div>
 
<div id="cmb10"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 11 ===
+
=== Problem 11: photon number density ===
 
Calculate the presently observed density of photons for the CMB and express it in Planck units.
 
Calculate the presently observed density of photons for the CMB and express it in Planck units.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 171: Line 160:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb11"></div>
 
<div id="cmb11"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 12 ===
+
=== Problem 12: $\gamma$ and $\nu$ backgrounds ===
 
Find the ratio of CMB photons' energy density to that of the neutrino background.
 
Find the ratio of CMB photons' energy density to that of the neutrino background.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 187: Line 175:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb12"></div>
 
<div id="cmb12"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 13 ===
+
=== Problem 13: energy of a photon ===
 
Determine the average energy of a CMB photon at present time.
 
Determine the average energy of a CMB photon at present time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 212: Line 199:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb13"></div>
 
<div id="cmb13"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 14 ===
+
=== Problem 14: contribution to radiation's energy ===
Why, when calculating the energy density of electromagnetic radiation in the Universe, we can restrict ourself to the CMB photons?
+
Why, when calculating the energy density of electromagnetic radiation in the Universe, we can restrict ourselves to the CMB photons?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 230: Line 216:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb44"></div>
 
<div id="cmb44"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 15 ===
+
=== Problem 15: conservation of photons' number ===
 
The relation $\rho_\gamma\propto a^{-4}$ assumes conservation of photon's number. Strictly speaking, this assumption is inaccurate. The Sun, for example, emits of the order of $10^{45}$ photons per second. Estimate the accuracy of this assumption regarding the photon's number conservation.
 
The relation $\rho_\gamma\propto a^{-4}$ assumes conservation of photon's number. Strictly speaking, this assumption is inaccurate. The Sun, for example, emits of the order of $10^{45}$ photons per second. Estimate the accuracy of this assumption regarding the photon's number conservation.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 243: Line 228:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb14"></div>
 
<div id="cmb14"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 16 ===
+
=== Problem 16: thermonuclear sources ===
 
Can hydrogen burning in the thermonuclear reactions provide the observed energy density of the relic radiation?
 
Can hydrogen burning in the thermonuclear reactions provide the observed energy density of the relic radiation?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 256: Line 240:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb15"></div>
 
<div id="cmb15"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 17 ===
+
=== Problem 17: energy density evolution ===
 
Find the ratio of relic radiation energy density in the epoch of last scattering to the present one.
 
Find the ratio of relic radiation energy density in the epoch of last scattering to the present one.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 272: Line 255:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb16"></div>
 
<div id="cmb16"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 18 ===
+
=== Problem 18: photons and baryons ===
 
Find the ratio of average number densities of photons to baryons in the Universe.
 
Find the ratio of average number densities of photons to baryons in the Universe.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 286: Line 268:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb17"></div>
 
<div id="cmb17"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 19 ===
+
=== Problem 19: temperature at last scattering ===
 
Explain qualitatively why the temperature of photons at the surface of last scattering (0.3 eV) is considerably less than the ionization energy of the hydrogen atom (13.6 eV).
 
Explain qualitatively why the temperature of photons at the surface of last scattering (0.3 eV) is considerably less than the ionization energy of the hydrogen atom (13.6 eV).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 299: Line 280:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
Line 305: Line 285:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
  
=== Problem 20 ===
+
=== Problem 20: recombination ===
Estimate the moment of the beginning of recombination-transition from ionized plasma to gas of neutral atoms.
+
Estimate the moment of the beginning of recombination: transition from ionized plasma to gas of neutral atoms.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 315: Line 295:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb21"></div>
 
<div id="cmb21"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 21 ===
+
=== Problem 21: mean free path ===
 
Determine the moment of time when the mean free path of photons became of the same order as the current observable size of Universe).
 
Determine the moment of time when the mean free path of photons became of the same order as the current observable size of Universe).
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 328: Line 307:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb22"></div>
 
<div id="cmb22"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 22 ===
+
=== Problem 22: excited states ===
How will the results of [[#cmb20|problem]] and [[#cmb21|problem]] change if one takes into account the possibility of creation of neutral hydrogen in excited states?
+
How will the [[#cmb20|moment of recombination]] and the time when [[#cmb21|mean free path of photons becomes comparable with the size of observable Universe]] change if one takes into account the possibility of creation of neutral hydrogen in excited states?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 341: Line 319:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
  
  
 
<div id="cmb35"></div>
 
<div id="cmb35"></div>
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
=== Problem 23 ===
+
=== Problem 23: what about neutrino? ===
 
Why is the cosmic neutrino background (CNB) temperature at present lower than the one for CMB?
 
Why is the cosmic neutrino background (CNB) temperature at present lower than the one for CMB?
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">

Revision as of 14:14, 14 October 2012


Problem 1: temperature

Show that in the expanding Universe the quantity $aT$ is an approximate invariant.


Problem 2: redshift

Show that the electromagnetic radiation frequency decreases with expansion of Universe as $\omega(t)\propto a(t)^{-1}$.


Problem 3: Planck spectrum

Show that if the radiation spectrum was equilibrium at some initial moment, then it will remain equilibrium during the following expansion.


Problem 4: one second after Big Bang

Find the CMB temperature one second after the Big Bang.


Problem 5: decoupling time

Show that creation of the relic radiation (the photon decoupling) took place in the matter-dominated epoch.


Problem 6: color of the sky

What color had the sky at the recombination epoch?


Problem 7: when the night sky appeared

When the night sky started to look black?


Problem 8: CMB vs microwave

Estimate the moment of time when the CMB energy density was comparable to that in the microwave oven.


Problem 9: wavelengths

Estimate the moment of time when the CMB wavelength will be comparable to that in the microwave oven, which is $\lambda=12.6\ cm$.


Problem 10: micro or not

When the relic radiation obtained formal right to be called CMB? And for what period of time?


Problem 11: photon number density

Calculate the presently observed density of photons for the CMB and express it in Planck units.


Problem 12: $\gamma$ and $\nu$ backgrounds

Find the ratio of CMB photons' energy density to that of the neutrino background.


Problem 13: energy of a photon

Determine the average energy of a CMB photon at present time.


Problem 14: contribution to radiation's energy

Why, when calculating the energy density of electromagnetic radiation in the Universe, we can restrict ourselves to the CMB photons?


Problem 15: conservation of photons' number

The relation $\rho_\gamma\propto a^{-4}$ assumes conservation of photon's number. Strictly speaking, this assumption is inaccurate. The Sun, for example, emits of the order of $10^{45}$ photons per second. Estimate the accuracy of this assumption regarding the photon's number conservation.


Problem 16: thermonuclear sources

Can hydrogen burning in the thermonuclear reactions provide the observed energy density of the relic radiation?


Problem 17: energy density evolution

Find the ratio of relic radiation energy density in the epoch of last scattering to the present one.


Problem 18: photons and baryons

Find the ratio of average number densities of photons to baryons in the Universe.


Problem 19: temperature at last scattering

Explain qualitatively why the temperature of photons at the surface of last scattering (0.3 eV) is considerably less than the ionization energy of the hydrogen atom (13.6 eV).


Problem 20: recombination

Estimate the moment of the beginning of recombination: transition from ionized plasma to gas of neutral atoms.


Problem 21: mean free path

Determine the moment of time when the mean free path of photons became of the same order as the current observable size of Universe).


Problem 22: excited states

How will the moment of recombination and the time when mean free path of photons becomes comparable with the size of observable Universe change if one takes into account the possibility of creation of neutral hydrogen in excited states?


Problem 23: what about neutrino?

Why is the cosmic neutrino background (CNB) temperature at present lower than the one for CMB?