Difference between revisions of "Time Evolution of CMB"

From Universe in Problems
Jump to: navigation, search
Line 1: Line 1:
 
[[Category:Cosmic Microwave Background (CMB)|2]]
 
[[Category:Cosmic Microwave Background (CMB)|2]]
 +
 +
 +
__NOTOC__
 +
 +
<div id="cmb0"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Show that in the expanding Universe the quantity $aT$ is an approximate invariant.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Expanding of Universe according to the Friedmann equations is adiabatic
 +
($S=const$). Entropy of the Universe is mainly determined by the photon component with $S\propto VT^3$. Using $V\propto a^3$, one obtains $aT=const$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb32"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Show that the electromagnetic radiation frequency decreases with expansion of Universe
 +
as $\omega(t)\propto a(t)^{-1}$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb34"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Show that if the radiation spectrum was equilibrium at some initial moment, then it will remain equilibrium during the following expansion.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Equilibrium character of the spectrum is equivalent to the following Planck form of the distribution function
 +
\[N(\omega)=\frac{1}{e^{\frac{\hbar\omega}{kT}}-1}=\frac{1}{e^{\frac{2\pi\hbar
 +
c}{kTa(t)\lambda_0}}-1},\] where $a(t)$ is scale factor.<br/>
 +
Taking into account that $aT=const$, one can see that the Planck form of the distribution does not change with time.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id=""></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Find the CMB temperature one second after the Big Bang.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb7"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Show that creation of the relic radiation (the photon decoupling) took place in the matter-dominated epoch.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The energy density of non-relativistic matter became equal to that of radiation at time moment (see [[Category:Dynamics_of_the_Universe_in_the_Big_Bang_Model|Chapter 3]]):
 +
$$
 +
t_{md} = \frac{2} {3H_0}\frac{\Omega _{r0}^{3/2}} {\Omega _{m0}^2}
 +
\approx 50\ 000\ \mbox{\it years.}
 +
$$
 +
 +
The primordial hydrogen was $50\%$ ionized at temperature ${T_{rec}}  \approx 3\ 400K$ in the age $t_{rec}\simeq
 +
300\ 000\mbox{\it years}.$ Thus at $t=t_{rec}$ the mater dominated already long time.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb_tmp_1"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
What color had the sky at the recombination epoch?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The newborn relic radiation had the black body spectrum with temperature $3\ 400$ K, which is very close to the radiation of the incandescent lamp-white color with orange admixture.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb_tmp_2"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
When the night sky started to look black?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">It happened when the CMB temperature became of order $270$ K, which corresponds to the scale factor value $a\sim0.01$. In the matter dominated Universe it happened in the age $t\approx14\cdot10^6$ years.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb4"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Estimate the moment of time when the CMB energy density was comparable to that in the microwave oven.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Typical microwave oven has power of order $10^3\mbox{\it W}$
 +
and volume of order $10$~liters, which with characteristic time of operation $10^3\mbox{\it s}$
 +
provides the energy density $10^8\mbox{\it J/m}^3$. According to Stephan-Boltzmann law:
 +
\[\rho _{_{CMB}} = \alpha T_{CMB}^4,\; \alpha =
 +
\frac{\pi^2}{15}\frac{(kT)^4}{(\hbar c)^3},\] such density corresponds to CMB temperature $T = 6\cdot10^5\mbox{\it K}$, which took place at the radiation dominated epoch with the scale factor value $a = 2.725/T\simeq4.5\cdot10^{-6}$, when the Universe had age $t = t_0a^2 = 9\cdot10^6 \mbox{\it s}$, or just three months and a half.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb5"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Estimate the moment of time when the CMB wavelength will be comparable to that in the microwave oven, which is $\lambda=12.6\ cm$.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Presently the CMB wavelength equals to $\lambda_0\simeq1.9
 +
\mbox{mm}$. Using the invariant $a/\lambda  = const$, and explicit dependence $a(t) = (t/t_0)^{2/3}$ for the matter-dominated epoch, one obtains $t = t_0(\lambda/\lambda_0)^{3/2}\simeq2.4\cdot10^{20}\mbox{s}\simeq 8\cdot10^{12}$ years. Taking into account the accelerated expansion of Universe it will happen much earlier though.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb_tmp_3"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
When the relic radiation obtained formal right to be called CMB? And for what period of time?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Microwave range includes wavelengths from 1mm 1m. Maximum intensity of the Planck spectrum falls on the wavelength \[\lambda_0\approx\frac{2\pi\hbar}{5kT}.\] Therefore microwaves correspond to the temperature range
 +
$0.003\,K<T<3\,K$, which takes place for the scale factor values in the interval $0.9<a<900$. For matter-dominated Universe it corresponds to the time interval between $12\cdot10^9$ years and $378\cdot10^{12}$ years.<br/>
 +
Therefore the relic radiation can formally b called the CMB already for $2\cdot10^9$ years and will loose it after almost $400\cdot10^{12}$ years.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb10"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Calculate the presently observed density of photons for the CMB and express it in Planck units.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Concentration of the photons equals to the integral of the photon distribution function (the Planck distribution), divided by the energy of a single photon. It results in the following:
 +
$${n_{_{CMB}} } = \frac{c^3}
 +
{\pi ^2}\int\limits_0^\infty  \frac{\omega ^2d\omega } {e^{\hbar
 +
\omega /kT} - 1}  = \frac{1} {\pi ^2}\left( \frac{kT} {\hbar c}
 +
\right)^3\int\limits_0^\infty  \frac{x^2dx} {{e^x} - 1}  =
 +
\frac{2\zeta \left( 3 \right)} {\pi ^2 l_{Pl}^3}\left( \frac{kT} {M_{Pl}c^2}
 +
\right)^3 \approx 410\;\mbox{\it cm}^{-3}.
 +
$$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb11"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Find the ratio of CMB photons' energy density to that of the neutrino background.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">$$
 +
\frac{\rho_\nu}{\rho _{_{CMB}}} = 3 \cdot \frac{7}{8} \cdot \left(
 +
\frac{4}{11} \right)^{4/3} \simeq 0.68.
 +
$$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb12"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Determine the average energy of a CMB photon at present time.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Average the CMB photon energy with the Planck distribution to obtain:
 +
$$
 +
\left\langle E \right\rangle _\omega = \frac{1}
 +
{\pi ^2c^3}\int\limits_0^\infty  \hbar \omega \frac{\omega ^2d\omega
 +
} {e^{\hbar \omega /kT} - 1}
 +
  = \frac{\hbar c}
 +
{\pi ^2}\left( \frac{kT} {\hbar c} \right)^4\int\limits_0^\infty
 +
\frac{x^3dx} {{e^x} - 1}  = \frac{\pi ^2} {15}\frac{(kT)^4} {(\hbar
 +
c)^3} = 0.398 \mbox{\it eV/cm}^3.
 +
$$
 +
 +
In [[#cmb10|problem]] there was obtained that ${n_{_{CMB}} } \approx
 +
410\:\mbox{cm}^{ - 3}.$ So that the average energy of a single photon evidently equals to $\varepsilon_{_{CMB}}\simeq 9.7\cdot 10^{-4}\mbox{eV}$.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb13"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Why, when calculating the energy density of electromagnetic radiation in the Universe, we can restrict ourself to the CMB photons?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Integral density of the CMB equals to ${\left\langle E
 +
\right\rangle _\omega } \approx 0.398\mbox{MeV/m}^3$, and current energy density of radiation from galaxies is roughly $ nL \approx 2 \cdot
 +
10^8L_{\odot} \mbox{\it Mpc}^{-3} \approx 2.6 \cdot {10^{ -
 +
33}}\mbox{\it W/m}^{ 3}. $ Assume that the latter luminosity was constant during the whole period of the Universe lifetime, then $ \rho _{st} \sim
 +
nLt_0 \approx 1.1 \cdot 10^{ - 15}\mbox{\it J/m}^{3}\approx
 +
0.007\mbox{MeV/m}^3.$ Even such overestimated value shows that $ \rho _{CMB} \approx 60\rho _{st},$ so that CMB energy density is many times higher than integral density of radiation from other sources (such as stars, galaxies, radiogalaxies, quasars), calculated with its probable evolution in the past.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb44"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
The relation $\rho_\gamma\propto a^{-4}$ assumes conservation of photon's number. Strictly speaking, this assumption is inaccurate. The Sun, for example, emits of the order of $10^{45}$ photons per second. Estimate the accuracy of this assumption regarding the photon's number conservation.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb14"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Can hydrogen burning in the thermonuclear reactions provide the observed energy density of the relic radiation?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">CMB energy density is $\left\langle E \right\rangle _\omega  \approx 0.398 \mbox{\it eV/cm}^3$, and that of baryon matter is $\simeq 160\mbox{\it eV/cm}^3.$ Therefore burning of a small fraction of hydrogen could provide sufficient amount of energy to fill the space with the radiation of temperature $\sim 3 \:K.$ However the burning of nuclear fuel in stars is known to give the radiation spectrum which is very distinct from the observed $3K$ equilibrium radiation, say nothing about the discrete angular distribution instead the uniform one. If the burning took place in the distant past then the high-temperature radiation emitted by the sources could in principle transform into the low-temperature one, but due to the cosmological expansion its energy density would significantly decreases, so that the required energy outcome in the past would go beyond any reasonable limit.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb15"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Find the ratio of relic radiation energy density in the epoch of last scattering to the present one.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Temperature of the CMB photons on the last scattering surface was $T_{dec}\simeq 3400K,$  so
 +
\[
 +
\frac{\rho_{ls}}{\rho_0}=\left(\frac{T_{dec}}{T_0}\right)^4\simeq
 +
3\cdot 10^{12}.\]</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb16"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Find the ratio of average number densities of photons to baryons in the Universe.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">Concentrations of photons and baryons depend on the scale factor in the same way: $n\sim a^{-3}$, so their ratio is invariant and according to present observational data it equals to
 +
$n_{_{CMB}}/n_{_B}\simeq 1.7\cdot 10^9.$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb17"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Explain qualitatively why the temperature of photons at the surface of last scattering (0.3 eV) is considerably less than the ionization energy of the hydrogen atom (13.6 eV).
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">One would naively expect that relative concentration of neutral hydrogen becomes significant when the Universe temperature falls below than $13.6$ {eV} which is the ionization energy of the hydrogen atom. However it happens at much lower temperatures in fact, because, firstly, the photon number density considerably exceeds that of baryon (their ratio equals to $n_{_{CMB}}/n_{_B}  \sim 10^{9} $, see problem \ref{cmb16}), and secondly, the Planck distribution has high-energy tails. it can be shown that the numbers of neutral and ionized hydrogen atoms become equal at temperature $T \approx 0.3\mbox{eV}\left( {3400K} \right),$ which is called the recombination temperature.</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb20"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Estimate the moment of the beginning of recombination-transition from ionized plasma to gas of neutral atoms.
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;">The recombination took place at the matter dominated epoch:
 +
$a(t=t_{rec})=(t_{rec}/t_0)^{2/3}=2.725/T_{rec}\simeq 8\cdot
 +
10^{-4}\Rightarrow t_{rec}\simeq 2\cdot 10^{-5},\;t_0=320\ \mbox{\it kyr.}$</p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb21"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Determine the moment of time when the mean free path of photons became of the same order as the current observable size of Universe).
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb22"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
How will the results of [[#cmb20|problem]] and [[#cmb21|problem]] change if one takes into account the possibility of creation of neutral hydrogen in excited states?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>
 +
 +
 +
 +
<div id="cmb35"></div>
 +
<div style="border: 1px solid #AAA; padding:5px;">
 +
=== Problem 1 ===
 +
Why is the cosmic neutrino background (CNB) temperature at present lower than the one for CMB?
 +
<div class="NavFrame collapsed">
 +
  <div class="NavHead">solution</div>
 +
  <div style="width:100%;" class="NavContent">
 +
    <p style="text-align: left;"></p>
 +
  </div>
 +
</div></div>

Revision as of 20:23, 1 October 2012



Problem 1

Show that in the expanding Universe the quantity $aT$ is an approximate invariant.


Problem 1

Show that the electromagnetic radiation frequency decreases with expansion of Universe as $\omega(t)\propto a(t)^{-1}$.


Problem 1

Show that if the radiation spectrum was equilibrium at some initial moment, then it will remain equilibrium during the following expansion.


Problem 1

Find the CMB temperature one second after the Big Bang.


Problem 1

Show that creation of the relic radiation (the photon decoupling) took place in the matter-dominated epoch.


Problem 1

What color had the sky at the recombination epoch?


Problem 1

When the night sky started to look black?


Problem 1

Estimate the moment of time when the CMB energy density was comparable to that in the microwave oven.


Problem 1

Estimate the moment of time when the CMB wavelength will be comparable to that in the microwave oven, which is $\lambda=12.6\ cm$.


Problem 1

When the relic radiation obtained formal right to be called CMB? And for what period of time?


Problem 1

Calculate the presently observed density of photons for the CMB and express it in Planck units.


Problem 1

Find the ratio of CMB photons' energy density to that of the neutrino background.


Problem 1

Determine the average energy of a CMB photon at present time.


Problem 1

Why, when calculating the energy density of electromagnetic radiation in the Universe, we can restrict ourself to the CMB photons?


Problem 1

The relation $\rho_\gamma\propto a^{-4}$ assumes conservation of photon's number. Strictly speaking, this assumption is inaccurate. The Sun, for example, emits of the order of $10^{45}$ photons per second. Estimate the accuracy of this assumption regarding the photon's number conservation.


Problem 1

Can hydrogen burning in the thermonuclear reactions provide the observed energy density of the relic radiation?


Problem 1

Find the ratio of relic radiation energy density in the epoch of last scattering to the present one.


Problem 1

Find the ratio of average number densities of photons to baryons in the Universe.


Problem 1

Explain qualitatively why the temperature of photons at the surface of last scattering (0.3 eV) is considerably less than the ionization energy of the hydrogen atom (13.6 eV).


Problem 1

Estimate the moment of the beginning of recombination-transition from ionized plasma to gas of neutral atoms.


Problem 1

Determine the moment of time when the mean free path of photons became of the same order as the current observable size of Universe).


Problem 1

How will the results of problem and problem change if one takes into account the possibility of creation of neutral hydrogen in excited states?


Problem 1

Why is the cosmic neutrino background (CNB) temperature at present lower than the one for CMB?