Difference between revisions of "Wave equation"

From Universe in Problems
Jump to: navigation, search
 
Line 9: Line 9:
 
<div style="border: 1px solid #AAA; padding:5px;">
 
<div style="border: 1px solid #AAA; padding:5px;">
 
=== Problem 1: Lorenz (Hilbert, harmonic) gauge===
 
=== Problem 1: Lorenz (Hilbert, harmonic) gauge===
The Lorenz\footnote{By analogy with electromagnetism; note the spelling: Lorenz, not Lorentz.} gauge conditions are
+
The Lorenz${}^{*}$ gauge conditions are
 
\begin{equation}
 
\begin{equation}
 
\label{LorenzGauge}
 
\label{LorenzGauge}
Line 16: Line 16:
 
Write down the Einstein's equations in the Lorenz gauge.
 
Write down the Einstein's equations in the Lorenz gauge.
  
'''Hint:'''
+
${}^{*}$By analogy with electromagnetism; note the spelling: Lorenz, not Lorentz.
 +
 
 +
<!--'''Hint:'''
 
They are reduced to the wave equation
 
They are reduced to the wave equation
 
\begin{equation}
 
\begin{equation}
 
\label{WaveEq}
 
\label{WaveEq}
 
\square \bar{h}_{\mu\nu}=\frac{16\pi G}{c^4}T_{\mu\nu}.
 
\square \bar{h}_{\mu\nu}=\frac{16\pi G}{c^4}T_{\mu\nu}.
\end{equation}
+
\end{equation}-->
 +
 
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>
Line 37: Line 40:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
 
  
  
Line 50: Line 51:
 
2) is the Lorenz frame unique? what is the remaining freedom for the choice of $\xi^\mu$?<br/>
 
2) is the Lorenz frame unique? what is the remaining freedom for the choice of $\xi^\mu$?<br/>
  
'''Hint:'''
+
<!--'''Hint:'''
 
+
 
1) The equation for $\xi^\mu$ is $\square \xi^\mu
 
1) The equation for $\xi^\mu$ is $\square \xi^\mu
 
=\partial_{\nu}{\bar{h}^{\nu}}_{\mu}$;<br/>
 
=\partial_{\nu}{\bar{h}^{\nu}}_{\mu}$;<br/>
2) no, any $\xi^\mu$ satisfying $\square \xi^{\mu}=0$ preserves the Lorenz gauge.
+
2) no, any $\xi^\mu$ satisfying $\square \xi^{\mu}=0$ preserves the Lorenz gauge.-->
  
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 80: Line 80:
 
   </div>
 
   </div>
 
</div></div>
 
</div></div>
 
 
  
  
Line 96: Line 94:
 
   </div>
 
   </div>
 
</div>--></div>
 
</div>--></div>
 
 
  
  
Line 107: Line 103:
 
Simplify the vacuum Einstein's equations in the transverse gauge (without the Lorenz gauge conditions), assuming vanishing boundary conditions.
 
Simplify the vacuum Einstein's equations in the transverse gauge (without the Lorenz gauge conditions), assuming vanishing boundary conditions.
  
'''Hint:'''
+
<!--'''Hint:'''
 +
$\Phi=\Psi=0,\quad w^\alpha =0,\quad
 +
\square s_{\alpha\beta}=0$-->
  
$\Phi=\Psi=0,\quad w^\alpha =0,\quad
 
\square s_{\alpha\beta}=0$
 
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
 
   <div class="NavHead">solution</div>
 
   <div class="NavHead">solution</div>

Latest revision as of 13:05, 15 January 2013




Problem 1: Lorenz (Hilbert, harmonic) gauge

The Lorenz${}^{*}$ gauge conditions are \begin{equation} \label{LorenzGauge} \partial_{\mu}\bar{h}^{\mu\nu}=0. \end{equation} Write down the Einstein's equations in the Lorenz gauge.

${}^{*}$By analogy with electromagnetism; note the spelling: Lorenz, not Lorentz.



Problem 2: Lorenz frame

Lorenz frame is the coordinate frame in which the Lorenz gauge conditions (\ref{LorenzGauge}) are satisfied.
1) find the coordinate transformation $x^\mu \to {x'}^{\mu}=x^\mu +\xi^\mu$ from a given frame to the Lorenz frame;
2) is the Lorenz frame unique? what is the remaining freedom for the choice of $\xi^\mu$?



Problem 3: Wave equation from action

Obtain the Einstein's equation in the Lorenz gauge in the first order by $h$ directly from the action


Problem 4: Vacuum equations in the transverse gauge

Simplify the vacuum Einstein's equations in the transverse gauge (without the Lorenz gauge conditions), assuming vanishing boundary conditions.



The only difference of the wave equation for gravitational perturbations from the one for the electromagnetic field is in its tensorial nature. The Green's function for the wave equation is known (see e.g. here or here), and the retarded solution, which is usually thought of as the one physically relevant, is \begin{equation} \bar{h}_{\mu\nu}(t,\mathbf{x})=\frac{1}{4\pi}\int \frac{d^{3}x'}{|\mathbf{x}-\mathbf{x'}|}\cdot \frac{16\pi G}{c^4}T_{\mu\nu} \Big(t-\frac{|\mathbf{x}-\mathbf{x'}|}{c}, \mathbf{x'}\Big). \end{equation}