Difference between revisions of "Cosmography"

From Universe in Problems
Jump to: navigation, search
Line 55: Line 55:
  
 
<div id="equ61"></div>
 
<div id="equ61"></div>
=== Problem 1. ===
+
=== Problem 2. ===
 
Using these cosmographic parameters, expand the redshift into a Taylor series in time.
 
Using these cosmographic parameters, expand the redshift into a Taylor series in time.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 83: Line 83:
  
 
<div id="equ61_1"></div>
 
<div id="equ61_1"></div>
=== Problem 1. ===
+
=== Problem 3. ===
 
Obtain the following relations between the deceleration parameter and Hubble's parameter
 
Obtain the following relations between the deceleration parameter and Hubble's parameter
 
\[q(t)=\frac{d}{dt}\left( \frac{1}{H} \right)-1;\quad
 
\[q(t)=\frac{d}{dt}\left( \frac{1}{H} \right)-1;\quad
Line 97: Line 97:
  
 
<div id="equ61_2"></div>
 
<div id="equ61_2"></div>
=== Problem 1. ===
+
=== Problem 4. ===
 
Show that  for the deceleration parameter the following relation holds:
 
Show that  for the deceleration parameter the following relation holds:
 
\[q\left( a \right)=-\left( 1+
 
\[q\left( a \right)=-\left( 1+
Line 111: Line 111:
  
 
<div id="equ61_3"></div>
 
<div id="equ61_3"></div>
=== Problem 1. ===
+
=== Problem 5. ===
 
Show that derivatives of lower cosmographic parameters can expressed through the higher ones.
 
Show that derivatives of lower cosmographic parameters can expressed through the higher ones.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 122: Line 122:
  
 
<div id="equ61_4"></div>
 
<div id="equ61_4"></div>
=== Problem 1. ===
+
=== Problem 6. ===
 
Prove that
 
Prove that
 
\[\frac{dq}{d\ln (1+z)}=j-q(2q+1).\]
 
\[\frac{dq}{d\ln (1+z)}=j-q(2q+1).\]
Line 134: Line 134:
  
 
<div id="equ61_5"></div>
 
<div id="equ61_5"></div>
=== Problem 1. ===
+
=== Problem 7. ===
 
Show that the derivatives $\frac{dH}{dz}$ and $\frac{{{d}^{2}}H}{d{{z}^{2}}}$ can be expressed through the parameters $q$ and $j$.
 
Show that the derivatives $\frac{dH}{dz}$ and $\frac{{{d}^{2}}H}{d{{z}^{2}}}$ can be expressed through the parameters $q$ and $j$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 148: Line 148:
  
 
<div id="equ61_6"></div>
 
<div id="equ61_6"></div>
=== Problem 1. ===
+
=== Problem 8. ===
 
Show that the time derivatives of the Hubble's parameter can be expressed through the cosmographic parameters as follows:
 
Show that the time derivatives of the Hubble's parameter can be expressed through the cosmographic parameters as follows:
 
\begin{eqnarray}
 
\begin{eqnarray}
Line 165: Line 165:
  
 
<div id="equ61_7"></div>
 
<div id="equ61_7"></div>
=== Problem 1. ===
+
=== Problem 9. ===
 
Consider the case of spatially flat Universe and express the scalar (Ricci) curvature and its time derivatives in terms of the cosmographic parameters $q,j,s,l$.
 
Consider the case of spatially flat Universe and express the scalar (Ricci) curvature and its time derivatives in terms of the cosmographic parameters $q,j,s,l$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 200: Line 200:
  
 
<div id="equ61_7n"></div>
 
<div id="equ61_7n"></div>
=== Problem 1. ===
+
=== Problem 10. ===
 
Show that the accelerated growth of expansion rate $\dot{H}>0$ takes place on the condition $q<-1$.
 
Show that the accelerated growth of expansion rate $\dot{H}>0$ takes place on the condition $q<-1$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 211: Line 211:
  
 
<div id="equ61_2_1"></div>
 
<div id="equ61_2_1"></div>
=== Problem 1. ===
+
=== Problem 11. ===
 
Obtain the relation
 
Obtain the relation
 
\[H(z)=-\frac{1}{1+z}\frac{dz}{dt}.\]
 
\[H(z)=-\frac{1}{1+z}\frac{dz}{dt}.\]
Line 223: Line 223:
  
 
<div id="dyn23"></div>
 
<div id="dyn23"></div>
=== Problem 1. ===
+
=== Problem 12. ===
 
Let $t_a$ be the moment in the history of the Universe when the decelerated expansion turned to the accelerated one, i.e. $q(t_a)=0$, and let $t_{1}<t_{a}$ and $t_{2}>t_{a}$ be two moments in the vicinity of $t_{a}$. Show that
 
Let $t_a$ be the moment in the history of the Universe when the decelerated expansion turned to the accelerated one, i.e. $q(t_a)=0$, and let $t_{1}<t_{a}$ and $t_{2}>t_{a}$ be two moments in the vicinity of $t_{a}$. Show that
 
\[\Delta t\equiv t_1-t_2 =\frac{1}{H_1}-\frac{1}{H_2}.\]
 
\[\Delta t\equiv t_1-t_2 =\frac{1}{H_1}-\frac{1}{H_2}.\]
Line 251: Line 251:
  
 
<div id="dyn27"></div>
 
<div id="dyn27"></div>
=== Problem 1. ===
+
=== Problem 13. ===
 
Obtain the following integral relation between the Hubble's parameter and the deceleration parameter
 
Obtain the following integral relation between the Hubble's parameter and the deceleration parameter
 
\[H=H_0\exp\left[  \int\limits_0^z
 
\[H=H_0\exp\left[  \int\limits_0^z
Line 264: Line 264:
  
 
<div id="equ62"></div>
 
<div id="equ62"></div>
=== Problem 1. ===
+
=== Problem 14. ===
 
Reformulate the Hubble's law in terms of redshift for close galaxies $(z\ll 1)$.
 
Reformulate the Hubble's law in terms of redshift for close galaxies $(z\ll 1)$.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 281: Line 281:
  
 
<div id="equ62_1"></div>
 
<div id="equ62_1"></div>
=== Problem 1. ===
+
=== Problem 15. ===
 
Show that
 
Show that
 
\[\frac{d}{dt}=-(1+z)H\frac{d}{dz}.\]
 
\[\frac{d}{dt}=-(1+z)H\frac{d}{dz}.\]
Line 296: Line 296:
  
 
<div id="equ62_21"></div>
 
<div id="equ62_21"></div>
=== Problem 1. ===
+
=== Problem 16. ===
 
Obtain the transformation law from the higher time derivatives to the derivatives with respect to redshift:
 
Obtain the transformation law from the higher time derivatives to the derivatives with respect to redshift:
 
\[\frac{d^{(i)}}{dt}\to \frac{d^{(i)}}{dz}.\]
 
\[\frac{d^{(i)}}{dt}\to \frac{d^{(i)}}{dz}.\]
Line 308: Line 308:
  
 
<div id="equ62_3"></div>
 
<div id="equ62_3"></div>
=== Problem 1. ===
+
=== Problem 17. ===
 
Calculate the derivatives of Hubble's parameter squared with respect to redshift \[\frac{d^{(i)}H^2}{dz^{(i)}},\quad i=1,2,3,4\]
 
Calculate the derivatives of Hubble's parameter squared with respect to redshift \[\frac{d^{(i)}H^2}{dz^{(i)}},\quad i=1,2,3,4\]
 
  and express them in terms of the cosmographic parameters.
 
  and express them in terms of the cosmographic parameters.
Line 320: Line 320:
  
 
<div id="dyn72"></div>
 
<div id="dyn72"></div>
=== Problem 1. ===
+
=== Problem 18. ===
 
Show that the deceleration parameter $q$ can be presented in the form
 
Show that the deceleration parameter $q$ can be presented in the form
 
\[q(x) = \frac{H'(x)}{H(x)}x - 1;\; x = 1 + z.\]
 
\[q(x) = \frac{H'(x)}{H(x)}x - 1;\; x = 1 + z.\]
Line 332: Line 332:
  
 
<div id="dyn72n"></div>
 
<div id="dyn72n"></div>
=== Problem 1. ===
+
=== Problem 19. ===
 
Show that
 
Show that
 
\[q(z)=\frac{1}{2}\frac{d\ln {{H}^{2}}}{d\ln (1+z)}.\]
 
\[q(z)=\frac{1}{2}\frac{d\ln {{H}^{2}}}{d\ln (1+z)}.\]
Line 344: Line 344:
  
 
<div id="dyn73"></div>
 
<div id="dyn73"></div>
=== Problem 1. ===
+
=== Problem 20. ===
 
Express the derivatives $dH/dz$ and $d^2H/dz^2$ throgh the parameters $q$ and \[r \equiv \frac{\dddot a}{aH^3}.\]
 
Express the derivatives $dH/dz$ and $d^2H/dz^2$ throgh the parameters $q$ and \[r \equiv \frac{\dddot a}{aH^3}.\]
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 355: Line 355:
  
 
<div id="equ62_2"></div>
 
<div id="equ62_2"></div>
=== Problem 1. ===
+
=== Problem 21. ===
 
Consider the time average of the deceleration parameter
 
Consider the time average of the deceleration parameter
 
\[\bar{q}\left( {{t}_{0}} \right)
 
\[\bar{q}\left( {{t}_{0}} \right)
Line 368: Line 368:
  
 
<div id="equ62_3b"></div>
 
<div id="equ62_3b"></div>
=== Problem 1. ===
+
=== Problem 22. ===
 
Show that the current age of the Universe is proportional to $H_{0}^{-1}$ and the proportionality coefficient is determined by the average value of the deceleration parameter.
 
Show that the current age of the Universe is proportional to $H_{0}^{-1}$ and the proportionality coefficient is determined by the average value of the deceleration parameter.
 
<div class="NavFrame collapsed">
 
<div class="NavFrame collapsed">
Line 381: Line 381:
  
 
<div id="equ62_4m"></div>
 
<div id="equ62_4m"></div>
=== Problem 1. ===
+
=== Problem 23. ===
 
Show that the proper distance to an object with redshift $z$ is related to the current deceleration parameter $q_0$ as
 
Show that the proper distance to an object with redshift $z$ is related to the current deceleration parameter $q_0$ as
 
\[R=\frac{c}{H_{0}q_{0}^{2}}\,\frac{1}{1+z}\,
 
\[R=\frac{c}{H_{0}q_{0}^{2}}\,\frac{1}{1+z}\,

Revision as of 22:55, 18 June 2012


Newtonian cosmology

In next problems we use an approach to the description of the evolution of the Universe's, which is called "cosmography"$^*$. It is based entirely on the cosmological principle and on some consequences of the equivalence principle. The term "cosmography" is a synonym for "cosmo-kinematics". Let us recall that the kinematics represent the part of mechanics which describes motion of bodies regardless of the forces responsible for it. In this sense cosmography represents nothing else than the kinematics of cosmological expansion.

In order to construct the key cosmological quantity $a(t)$ one needs the equations of motion (the Einstein's equation) and some assumptions an the material composition of the Universe, which enable one to obtain the energy-momentum tensor. The efficiency of cosmography lies in the ability to test cosmological models of any kind, that are compatible with the cosmological principle. Modifications of General Relativity or introduction of new components (such as dark matter or dark energy) certainly change the dependence $a(t)$, but they absolutely do not affect the kinematics of the expanding Universe.

The rate of Universe's expansion, determined by Hubble parameter $H(t)$, depends on time. The deceleration parameter $q(t)$ is used to quantify this dependence. Let us define it through the expansion of the scale factor $a(t)$ in a Taylor series in the vicinity of current time ${{t}_{0}}$: \[a(t)=a\left( {{t}_{0}} \right) +\dot{a}\left( {{t}_{0}} \right)\left[ t-{{t}_{0}} \right] +\frac{1}{2}\ddot{a}({t}_{0}) {{\left[ t-{{t}_{0}} \right]}^{2}}+\cdots\] Let us present this in the form \[\frac{a(t)}{a\left( {{t}_{0}} \right)} =1+{{H}_{0}}\left[ t-{{t}_{0}} \right] -\frac{{{q}_{0}}}{2}H_{0}^{2} {{\left[ t-{{t}_{0}} \right]}^{2}}+\cdots\] where the deceleration parameter is \[q(t)\equiv -\frac{\ddot{a}(t)a(t)}{{{{\dot{a}}}^{2}}(t)} =-\frac{\ddot{a}(t)}{a(t)}\frac{1}{{{H}^{2}}(t)}.\]

Note that the accelerated growth of scale factor takes place for $q<0$. When the sign of the deceleration parameter was originally defined, it seemed evident that gravity is the only force that governs the dynamics of Universe and it should slow down its expansion. The choice of the sign was determined then by natural wish to deal with positive quantities. This choice turned out to contradict the observable dynamics and became an example of historical curiosity.

In order to describe the kinematics of the cosmological expansion in more details it is useful to consider the extended set of the parameters: \begin{align} H(t)\equiv &\frac{1}{a}\frac{da}{dt}\\ q(t)\equiv& -\frac{1}{a}\frac{{{d}^{2}}a}{d{{t}^{2}}}{{\left[ \frac{1}{a}\frac{da}{dt} \right]}^{-2}}\\ j(t)\equiv &\frac{1}{a}\frac{{{d}^{3}}a}{d{{t}^{3}}}{{\left[ \frac{1}{a}\frac{da}{dt} \right]}^{-3}}\\ s(t)\equiv &\frac{1}{a}\frac{{{d}^{4}}a}{d{{t}^{4}}}{{\left[ \frac{1}{a}\frac{da}{dt} \right]}^{-4}}\\ l(t)\equiv&\frac{1}{a}\frac{{{d}^{5}}a}{d{{t}^{5}}}{{\left[ \frac{1}{a}\frac{da}{dt} \right]}^{-5}} \end{align}


$^*$See Weinberg, Gravitation and Cosmology, chapter 14.


Problem 1.

Using the cosmographic parameters introduced above, expand the scale factor into a Taylor series in time.


Problem 2.

Using these cosmographic parameters, expand the redshift into a Taylor series in time.


Problem 3.

Obtain the following relations between the deceleration parameter and Hubble's parameter \[q(t)=\frac{d}{dt}\left( \frac{1}{H} \right)-1;\quad q(z)=\frac{1+z}{H}\frac{dH}{dz}-1;\quad q(z)=\frac{d\ln H}{dz}(1+z)-1.\]


Problem 4.

Show that for the deceleration parameter the following relation holds: \[q\left( a \right)=-\left( 1+ \frac{\frac{dH}{dt}}{{{H}^{2}}} \right) -\left( 1+\frac{a\frac{dH}{da}}{H} \right).\]


Problem 5.

Show that derivatives of lower cosmographic parameters can expressed through the higher ones.


Problem 6.

Prove that \[\frac{dq}{d\ln (1+z)}=j-q(2q+1).\]


Problem 7.

Show that the derivatives $\frac{dH}{dz}$ and $\frac{{{d}^{2}}H}{d{{z}^{2}}}$ can be expressed through the parameters $q$ and $j$.


Problem 8.

Show that the time derivatives of the Hubble's parameter can be expressed through the cosmographic parameters as follows: \begin{eqnarray} \dot{H} &=& -{{H}^{2}}(1+q); \\ \ddot{H} &=& {{H}^{3}}\left( j+3q+2 \right); \\ \dddot{H}&=& {{H}^{4}}\left[ s-4j-3q(q+4)-6 \right]; \\ \ddddot{H}&=& {{H}^{5}}\left[ l-5s+10\left( q+2 \right)j+30(q+2)q+24\right]. \end{eqnarray}


Problem 9.

Consider the case of spatially flat Universe and express the scalar (Ricci) curvature and its time derivatives in terms of the cosmographic parameters $q,j,s,l$.


Problem 10.

Show that the accelerated growth of expansion rate $\dot{H}>0$ takes place on the condition $q<-1$.


Problem 11.

Obtain the relation \[H(z)=-\frac{1}{1+z}\frac{dz}{dt}.\]


Problem 12.

Let $t_a$ be the moment in the history of the Universe when the decelerated expansion turned to the accelerated one, i.e. $q(t_a)=0$, and let $t_{1}<t_{a}$ and $t_{2}>t_{a}$ be two moments in the vicinity of $t_{a}$. Show that \[\Delta t\equiv t_1-t_2 =\frac{1}{H_1}-\frac{1}{H_2}.\]


Problem 13.

Obtain the following integral relation between the Hubble's parameter and the deceleration parameter \[H=H_0\exp\left[ \int\limits_0^z [q(z^\prime)+1] d\ln(1+z^\prime)\right].\]


Problem 14.

Reformulate the Hubble's law in terms of redshift for close galaxies $(z\ll 1)$.


Problem 15.

Show that \[\frac{d}{dt}=-(1+z)H\frac{d}{dz}.\]


Problem 16.

Obtain the transformation law from the higher time derivatives to the derivatives with respect to redshift: \[\frac{d^{(i)}}{dt}\to \frac{d^{(i)}}{dz}.\]


Problem 17.

Calculate the derivatives of Hubble's parameter squared with respect to redshift \[\frac{d^{(i)}H^2}{dz^{(i)}},\quad i=1,2,3,4\]

and express them in terms of the cosmographic parameters.


Problem 18.

Show that the deceleration parameter $q$ can be presented in the form \[q(x) = \frac{H'(x)}{H(x)}x - 1;\; x = 1 + z.\]


Problem 19.

Show that \[q(z)=\frac{1}{2}\frac{d\ln {{H}^{2}}}{d\ln (1+z)}.\]


Problem 20.

Express the derivatives $dH/dz$ and $d^2H/dz^2$ throgh the parameters $q$ and \[r \equiv \frac{\dddot a}{aH^3}.\]


Problem 21.

Consider the time average of the deceleration parameter \[\bar{q}\left( {{t}_{0}} \right) =\frac{1}{{{t}_{0}}}\int_{0}^{{{t}_{0}}}{q(t)dt}\] and show that it can be evaluated without integration of equation of motion for the scale factor.


Problem 22.

Show that the current age of the Universe is proportional to $H_{0}^{-1}$ and the proportionality coefficient is determined by the average value of the deceleration parameter.


Problem 23.

Show that the proper distance to an object with redshift $z$ is related to the current deceleration parameter $q_0$ as \[R=\frac{c}{H_{0}q_{0}^{2}}\,\frac{1}{1+z}\, \Big[q_{0}z +(q_{0}-1)\big(\sqrt{1+2q_0}-1\big)\Big].\]